Résumé
In mathematics, the discrete sine transform (DST) is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using a purely real matrix. It is equivalent to the imaginary parts of a DFT of roughly twice the length, operating on real data with odd symmetry (since the Fourier transform of a real and odd function is imaginary and odd), where in some variants the input and/or output data are shifted by half a sample. A family of transforms composed of sine and sine hyperbolic functions exists. These transforms are made based on the natural vibration of thin square plates with different boundary conditions. The DST is related to the discrete cosine transform (DCT), which is equivalent to a DFT of real and even functions. See the DCT article for a general discussion of how the boundary conditions relate the various DCT and DST types. Generally, the DST is derived from the DCT by replacing the Neumann condition at x=0 with a Dirichlet condition. Both the DCT and the DST were described by Nasir Ahmed, T. Natarajan, and K.R. Rao in 1974. The type-I DST (DST-I) was later described by Anil K. Jain in 1976, and the type-II DST (DST-II) was then described by H.B. Kekra and J.K. Solanka in 1978. DSTs are widely employed in solving partial differential equations by spectral methods, where the different variants of the DST correspond to slightly different odd/even boundary conditions at the two ends of the array. Like any Fourier-related transform, discrete sine transforms (DSTs) express a function or a signal in terms of a sum of sinusoids with different frequencies and amplitudes. Like the discrete Fourier transform (DFT), a DST operates on a function at a finite number of discrete data points. The obvious distinction between a DST and a DFT is that the former uses only sine functions, while the latter uses both cosines and sines (in the form of complex exponentials). However, this visible difference is merely a consequence of a deeper distinction: a DST implies different boundary conditions than the DFT or other related transforms.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
CIVIL-226: Introduction to machine learning for engineers
Machine learning is a sub-field of Artificial Intelligence that allows computers to learn from data, identify patterns and make predictions. As a fundamental building block of the Computational Thinki
CS-233(a): Introduction to machine learning (BA3)
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
Séances de cours associées (32)
Éléments d'apprentissage par renforcement : quiz sur les États
Comprend un quiz sur le nombre d'états discrets dans le backgammon, mettant en évidence l'immense complexité des applications d'apprentissage de renforcement.
Empreintes digitales de la caméra fragile
Discutez des empreintes digitales d'un appareil photo fragile, de leur sécurité, de leur mise en œuvre et de leurs tests pour la médecine légale de l'image numérique.
Réseaux neuronaux : formation et activation
Explore les réseaux neuronaux, les fonctions d'activation, la rétropropagation et l'implémentation de PyTorch.
Afficher plus
Publications associées (75)

On discrete Fourier uniqueness sets in Euclidean space

Maryna Viazovska

In this paper we present a new construction of a discrete Fourier uniqueness set in Euclidean space. ...
ICM2022

Practical Multiple-Scattering Sheen Using Linearly Transformed Cosines

Tizian Lucien Zeltner

We introduce a new volumetric sheen BRDF that approximates scattering observed in surfaces covered with normally-oriented fibers. Our previous sheen model was motivated by measured cloth reflectance, but lacked significant backward scattering. The model pr ...
ASSOC COMPUTING MACHINERY2022

Leveraging topology, geometry, and symmetries for efficient Machine Learning

Michaël Defferrard

When learning from data, leveraging the symmetries of the domain the data lies on is a principled way to combat the curse of dimensionality: it constrains the set of functions to learn from. It is more data efficient than augmentation and gives a generaliz ...
EPFL2022
Afficher plus
Concepts associés (5)
Série de Fourier
vignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Transformation de Fourier rapide
La transformation de Fourier rapide (sigle anglais : FFT ou fast Fourier transform) est un algorithme de calcul de la transformation de Fourier discrète (TFD). Sa complexité varie en O(n log n) avec le nombre n de points, alors que la complexité de l’algorithme « naïf » s'exprime en O(n). Ainsi, pour n = , le temps de calcul de l'algorithme rapide peut être 100 fois plus court que le calcul utilisant la formule de définition de la TFD.
Fourier analysis
In mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Afficher plus
MOOCs associés (4)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus