thumb|upright=2.25|Illustration du paradoxe de Banach-TarskiEn mathématiques, et plus précisément en géométrie, le paradoxe de Banach-Tarski est un théorème, démontré en 1924 par Stefan Banach et Alfred Tarski, qui affirme qu'il est possible de découper une boule de l'espace usuel en un nombre fini de morceaux et de réassembler ces morceaux pour former deux boules identiques à la première, à un déplacement près. Ce résultat paradoxal implique que ces morceaux soient non mesurables, sans quoi on obtiendrait une contradiction (le volume étant un exemple de mesure, cela veut plus simplement dire que ces morceaux n'ont pas de volume). Le paradoxe de Banach-Tarski se généralise à tous les , mais ne peut se réaliser dans le plan . La démonstration de ce résultat utilise l’axiome du choix, nécessaire pour construire des ensembles non mesurables. Le groupe des déplacements (ou isométries affines directes) de est l’ensemble de toutes les translations et rotations (autour d'un axe) et de leur composées, c’est-à-dire l’ensemble de toutes les manières de prendre une figure dans l’espace et de la déplacer ou de la faire tourner sur elle-même sans la déformer (et en particulier sans changer sa taille). Un déplacement peut se voir comme une fonction mathématique g et une figure comme un ensemble de points E. Dire qu’il existe un déplacement g tel que g(E) = F, c’est simplement dire que E et F ont la même forme et la même taille, bref qu’ils sont identiques à leur position près. Deux ensembles sont donc équidécomposables si on peut couper le premier en morceaux et reconstruire le deuxième simplement en déplaçant les morceaux (c’est-à-dire en leur appliquant un déplacement). Un ensemble est dédoublable s’il est équidécomposable à la réunion de deux copies disjointes de lui-même. Informellement, une mesure est une fonction mathématique qui satisfait aux mêmes conditions qu’une longueur. C’est donc une généralisation de la longueur (ou du volume).