Categorical logicNOTOC Categorical logic is the branch of mathematics in which tools and concepts from are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science. In broad terms, categorical logic represents both syntax and semantics by a , and an interpretation by a functor. The categorical framework provides a rich conceptual background for logical and type-theoretic constructions. The subject has been recognisable in these terms since around 1970.
Fixed-point combinatorIn mathematics and computer science in general, a fixed point of a function is a value that is mapped to itself by the function. In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator) is a higher-order function that returns some fixed point of its argument function, if one exists. Formally, if the function f has one or more fixed points, then and hence, by repeated application, In the classical untyped lambda calculus, every function has a fixed point.
Type dépendantEn Informatique et en Logique, un type dépendant est un type qui peut dépendre d'une valeur définie dans le langage typé. Les langages Agda et Gallina (de l'assistant de preuve Coq) sont des exemples de langages à type dépendant. Les types dépendants permettent par exemple de définir le type des listes à n éléments. Voici un exemple en Coq. Inductive Vect (A: Type): nat -> Type := | nil: Vect A 0 | cons (n: nat) (x: A) (t: Vect A n): Vect A (S n).
Typed lambda calculusA typed lambda calculus is a typed formalism that uses the lambda-symbol () to denote anonymous function abstraction. In this context, types are usually objects of a syntactic nature that are assigned to lambda terms; the exact nature of a type depends on the calculus considered (see kinds below). From a certain point of view, typed lambda calculi can be seen as refinements of the untyped lambda calculus, but from another point of view, they can also be considered the more fundamental theory and untyped lambda calculus a special case with only one type.
Normal form (abstract rewriting)In abstract rewriting, an object is in normal form if it cannot be rewritten any further, i.e. it is irreducible. Depending on the rewriting system, an object may rewrite to several normal forms or none at all. Many properties of rewriting systems relate to normal forms. Stated formally, if (A,→) is an abstract rewriting system, x∈A is in normal form if no y∈A exists such that x→y, i.e. x is an irreducible term. An object a is weakly normalizing if there exists at least one particular sequence of rewrites starting from a that eventually yields a normal form.
Function typeIn computer science and mathematical logic, a function type (or arrow type or exponential) is the type of a variable or parameter to which a function has or can be assigned, or an argument or result type of a higher-order function taking or returning a function. A function type depends on the type of the parameters and the result type of the function (it, or more accurately the unapplied type constructor · → ·, is a higher-kinded type).
Système FLe est un formalisme logique qui permet d'exprimer de façon très riche et très rigoureuse des fonctions et d'y démontrer formellement des propriétés difficiles. Plus précisément, le (également connu sous le nom de lambda-calcul polymorphe ou de lambda-calcul du second ordre) est une extension du lambda-calcul simplement typé introduite indépendamment par le logicien Jean-Yves Girard et par l'informaticien John C. Reynolds. Ce système se distingue du lambda-calcul simplement typé par l'existence d'une quantification universelle sur les types qui permet d'exprimer du polymorphisme.
Lambda cubethumb|Le lambda-cube. Initialement proposé par Henk Barendregt, le -cube permet de visualiser les différentes dimensions pour lesquelles le calcul des constructions apporte une généralisation par rapport au lambda-calcul simplement typé où un terme ne peut dépendre que d'un autre terme. Chaque axe représente une nouvelle forme d'abstraction : Terme dépendant de type : le polymorphisme ; Type dépendant de type : présence d'opérateurs de types ; Type dépendant de terme. Catégorie:Calculabilité Catégorie:Théor
Logique combinatoireEn logique mathématique, la logique combinatoire est une théorie logique introduite par Moses Schönfinkel en 1920 lors d'une conférence et développée dès 1929 par Haskell Brooks Curry pour supprimer le besoin de variables en mathématiques, pour formaliser rigoureusement la notion de fonction et pour minimiser le nombre d'opérateurs nécessaires pour définir le calcul des prédicats à la suite de Henry M. Sheffer. Plus récemment, elle a été utilisée en informatique comme modèle théorique de calcul et comme base pour la conception de langages de programmation fonctionnels.
Type constructorIn the area of mathematical logic and computer science known as type theory, a type constructor is a feature of a typed formal language that builds new types from old ones. Basic types are considered to be built using nullary type constructors. Some type constructors take another type as an argument, e.g., the constructors for product types, function types, power types and list types. New types can be defined by recursively composing type constructors.