Neutrinoless double beta decayThe neutrinoless double beta decay (0νββ) is a commonly proposed and experimentally pursued theoretical radioactive decay process that would prove a Majorana nature of the neutrino particle. To this day, it has not been found. The discovery of the neutrinoless double beta decay could shed light on the absolute neutrino masses and on their mass hierarchy (Neutrino mass). It would mean the first ever signal of the violation of total lepton number conservation. A Majorana nature of neutrinos would confirm that the neutrino is its own antiparticle.
Nombre de neutronsvignette|isotope, poids atomique, nombre de masse, protons, neutrons, carbone 14, éléments Le nombre de neutrons (N) est le terme employé en chimie et en physique pour représenter le nombre de neutrons du noyau d'un atome. Il est égal à la différence entre le nombre de masse A et le numéro atomique Z. N = A - Z À la différence du nombre de masse et du numéro atomique, il n'accompagne généralement pas le symbole chimique. Comme le nombre de masse, il détermine chez un élément chimique l'existence d'isotopes.
Double capture électroniqueLa double capture électronique est un type de radioactivité de certains isotopes. Pour un nucléide donné de nombre de masse A et de numéro atomique Z, ce mode de radioactivité n'est possible que si la masse du nucléide obtenu (A ; Z-2) est inférieure à celle du nucléide initial. Dans ce type de radioactivité, deux électrons du cortège électronique sont capturés par deux protons du noyau, devenant ainsi deux neutrons. Deux neutrinos sont émis dans cette transformation.
Particule de MajoranaEn physique des particules, une particule de Majorana ou fermion de Majorana est un fermion qui est sa propre antiparticule. Ces particules sont nommées en hommage au physicien Ettore Majorana, qui a proposé ce modèle en établissant l'équation qui porte son nom. Ce terme est parfois utilisé en opposition aux particules de Dirac (ou fermions de Dirac) qui ont une antiparticule différente d'elles-mêmes. En 1928, Paul Dirac publie l'article qui contient l'équation de Dirac.
Nucléide primordialthumb|upright=2|Abondance (en fraction atomique par rapport au silicium) des éléments chimiques dans la croûte terrestre externe en fonction de leur numéro atomiqueZ. Les éléments les plus rares (en jaune) ne sont pas les plus lourds mais les plus sidérophiles (fréquemment associés au fer) dans la classification géochimique. Ils ont été épuisés par migration en profondeur dans le noyau terrestre. Leur abondance dans les météoroïdes est plus élevée. De plus, le tellure et le sélénium ont été épuisés par formation d'hydrures volatils.
Bismuth 209Le bismuth 209, noté Bi, est l'isotope du bismuth dont le nombre de masse est égal à 209 : son noyau atomique compte et avec un spin pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . C'est le seul isotope naturel du bismuth, ainsi que le produit de la désintégration β du : ⟶ + e + .
Nombre magique (physique)En physique nucléaire, un nombre magique est un nombre de protons ou de neutrons pour lequel un noyau atomique est particulièrement stable ; dans le modèle en couches décrivant la structure nucléaire, cela correspond à un arrangement en couches complètes. Les sept nombres magiques vérifiés expérimentalement sont : 2, 8, 20, 28, 50, 82, 126 (). Une approche théorique montre que 184 pourrait être le magique.
Oscillation des neutrinosvignette|Phénomène périodique L'oscillation du neutrino est un phénomène de la mécanique quantique dans lequel un neutrino créé avec une certaine saveur leptonique (neutrino électronique, muonique ou tauique) peut être mesuré plus tard ayant une saveur différente. La probabilité d'avoir une valeur donnée de cette propriété varie de façon périodique alors que la particule se propage. L'oscillation du neutrino est d'intérêt tant théorique qu'expérimental, puisque l'observation de ce phénomène implique la non-nullité de la masse de la particule, .
Isotope stablevignette|Table des isotopes par mode de désintégration majoritaire (données du programme Nucleus). Un isotope stable d'un élément chimique est un isotope qui n'a pas de radioactivité décelable. Au , 256 nucléides correspondant à 80 éléments étaient considérés comme stables, bien que le calcul pour un nombre significatif d'entre eux suggère qu'ils devraient connaître certains modes de désintégration. Les éléments 43 et 61 — respectivement le technétium et le prométhium — n'ont aucun isotope stable ; le technétium 99 est présent naturellement à l'état de traces.
Noyau atomiquevignette|Noyau atomique de l'hélium.Le noyau atomique est la région située au centre d'un atome, constituée de protons et de neutrons (les nucléons). La taille du noyau (de l'ordre du femtomètre, soit ) est environ plus petite que celle de l'atome () et concentre quasiment toute sa masse. Les forces nucléaires qui s'exercent entre les nucléons sont à peu près un million de fois plus grandes que les forces entre les atomes ou les molécules. Les noyaux instables, dits radioactifs, sont ceux d'où s'échappent des neutrons.