Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The neutrinoless double beta decay (0νββ) is a commonly proposed and experimentally pursued theoretical radioactive decay process that would prove a Majorana nature of the neutrino particle. To this day, it has not been found. The discovery of the neutrinoless double beta decay could shed light on the absolute neutrino masses and on their mass hierarchy (Neutrino mass). It would mean the first ever signal of the violation of total lepton number conservation. A Majorana nature of neutrinos would confirm that the neutrino is its own antiparticle. To search for neutrinoless double beta decay, there are currently a number of experiments underway, with several future experiments for increased sensitivity proposed as well. In 1939, Wendell H. Furry proposed the idea of the Majorana nature of the neutrino, which was associated with beta decays. Furry stated the transition probability to even be higher for the neutrinoless double beta decay. It was the first idea proposed to search for the violation of lepton number conservation. It has, since then, drawn attention to it for being useful to study the nature of neutrinos (see quote). [T]he 0ν mode [...] which violates the lepton number and has been recognized since a long time as a powerful tool to test neutrino properties. The Italian physicist Ettore Majorana first introduced the concept of a particle being its own antiparticle. Particles' nature was subsequently named after him as Majorana particles. The neutrinoless double beta decay is one method to search for the possible Majorana nature of neutrinos. Neutrinos are conventionally produced in weak decays. Weak beta decays normally produce one electron (or positron), emit an antineutrino (or neutrino) and increase the nucleus' proton number by one. The nucleus' mass (i.e. binding energy) is then lower and thus more favorable. There exists a number of elements that can decay into a nucleus of lower mass, but they cannot emit one electron only because the resulting nucleus is kinematically (that is, in terms of energy) not favorable (its energy would be higher).
Varun Sharma, Konstantin Androsov, Xin Chen, Rakesh Chawla, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Thomas Muller, David Vannerom, Albert Perez, Alessandro Caratelli, François Robert, Davide Ceresa, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Kai Yi, Jing Li, Stefano Michelis, François Bianchi, David Parker, Martin Fuchs
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Abhisek Datta, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ioannis Evangelou, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Anton Petrov, Xin Sun, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer
Radoslav Marchevski, Alina Kleimenova