Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Octopamine (molecular formula C8H11NO2; also known as OA, and also norsynephrine, para-octopamine and others) is an organic chemical closely related to norepinephrine, and synthesized biologically by a homologous pathway. Octopamine is often considered the major "fight-or-flight" neurohormone of invertebrates. Its name is derived from the fact that it was first identified in the salivary glands of the octopus. In many types of invertebrates octopamine is an important neurotransmitter and hormone. In protostomes — arthropods, molluscs, and several types of worms — it substitutes for norephinephrine and performs functions apparently similar to those of norepinephrine in mammals, functions that have been described as mobilizing the body and nervous system for action. In mammals octopamine is found only in trace amounts, and no biological function has been solidly established for it. It is also found naturally in numerous plants, including bitter orange. Octopamine has been sold under trade names such as Epirenor, Norden, and Norfen for use as a sympathomimetic drug, available by prescription. Octopamine exerts its effects by binding to and activating receptors located on the surface of cells. These receptors have mainly been studied in insects, where they can be divided into distinct types: OctαR (alpha-adrenergic-like), are structurally and functionally similar to noradrenergic alpha-1 receptors in mammals. There are multiple subtypes of the OctαR receptor. For example, the kissing bug (Rhodnius prolixus) has Octα1-R, Octα2R. OctβR (beta-adrenergic-like), are structurally and functionally similar to noradrenergic beta receptors in mammals. There are multiple subtypes of the OctβR receptor. For example, the fruit fly (Drosophila melanogaster) has DmOctβ1R, DmOctβ2R, and DmOctβ3R. OAMB. The diversity of this receptor is relatively unknown. The fruit fly (Drosophila melanogaster) has two distinct isoforms which are functionally distinct: OambK3 and OambAS.
Michael Herzog, Wei-Hsiang Lin
Maria del Carmen Sandi Perez, Dogukan Hazar Ülgen, Silvie Rosalie Ruigrok
Li Tang, Yugang Guo, Yuqing Xie, Min Gao, Armand Kurum, Kewen Lei, Yu Zhao, Xiaomeng Hu, Simon Bart M. Van Herck