Concept

Laser-heated pedestal growth

Résumé
Laser-heated pedestal growth (LHPG) or laser floating zone (LFZ) is a crystal growth technique. A narrow region of a crystal is melted with a powerful CO2 or YAG laser. The laser and hence the floating zone, is moved along the crystal. The molten region melts impure solid at its forward edge and leaves a wake of purer material solidified behind it. This technique for growing crystals from the melt (liquid/solid phase transition) is used in materials research. The main advantages of this technique are the high pulling rates (60 times greater than the conventional Czochralski technique) and the possibility of growing materials with very high melting points. In addition, LHPG is a crucible-free technique, which allows single crystals to be grown with high purity and low stress. The geometric shape of the crystals (the technique can produce small diameters), and the low production cost, make the single-crystal fibers (SCF) produced by LHPG suitable substitutes for bulk crystals in many devices, especially those that use high-melting-point materials. However, single-crystal fibers must have equal or superior optical and structural qualities compared to bulk crystals to substitute for them in technological devices. This can be achieved by carefully controlling the growth conditions. Until 1980, laser-heated crystal growth used only two laser beams focused over the source material. This condition generated a high radial thermal gradient in the molten zone, making the process unstable. Increasing the number of beams to four did not solve the problem, although it improved the growth process. An improvement to the laser-heated crystal growth technique was made by Fejer et al., who incorporated a special optical component known as a reflaxicon, consisting of an inner cone surrounded by a larger coaxial cone section, both with reflecting surfaces. This optical element converts the cylindrical laser beam into a larger diameter hollow cylinder surface. This optical component allows radial distribution of the laser energy over the molten zone, reducing radial thermal gradients.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.