Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la méthode ANOVA, en se concentrant sur la partition de la somme totale des carrés en composantes de traitement et d'erreur, les calculs carrés moyens, les statistiques de Fisher et la distribution F.
Introduit des modèles linéaires dans l'apprentissage automatique, couvrant les bases, les modèles paramétriques, la régression multi-sorties et les mesures d'évaluation.
Couvre les méthodes Monte Carlo, la réduction de la variance et le contrôle optimal stochastique, explorant les techniques de simulation, l'efficacité et la dynamique d'investissement.
Explore les concepts avancés dans les modèles de régression linéaire, y compris la multicolinéarité, les tests d'hypothèses et les valeurs aberrantes de manipulation.
Couvre la dérivation de la formule de descente de gradient stochastique pour un perceptron simple et explore l'interprétation géométrique de la classification.