MATH-417: Number theory II.b - selected topicsThis year's topic is "Additive combinatorics and applications." We will introduce various methods from additive combinatorics, establish the sum-product theorem over finite fields and derive various a
MATH-494: Topics in arithmetic geometryP-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
MATH-410: Riemann surfacesThis course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-645: Young Topologists Meeting Mini-CoursesWe expect these mini-courses to equip junior researchers with new tools, techniques, and perspectives for attacking a broad range of questions in their own areas of research while also inspiring stude
MATH-643: Applied l-adic cohomologyIn this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb