En physique, la mécanique relativiste se rapporte à la mécanique compatible avec la relativité restreinte (RR) et la relativité générale (RG).
Elle fournit une description non-quantique d'un système de particules, ou d'un liquide, dans le cas où les vitesses de déplacement des objets sont comparables à la vitesse de la lumière c. En conséquence, la mécanique classique est étendue correctement aux particules se déplaçant à des vitesses et des énergies élevées, et assure une inclusion cohérente de l'électromagnétisme avec la mécanique des particules. Ce n'est pas possible dans la relativité galiléenne, où il est permis aux particules et à la lumière de voyager à n'importe quelle vitesse, y compris plus vite que la lumière. Les fondements de la mécanique relativistes sont les postulats de la relativité restreinte et de la relativité générale. L'unification de la relativité restreinte avec la mécanique quantique est la mécanique quantique relativiste, tandis que les tentatives pour faire de même avec la relativité générale s'appelle la gravité quantique, un problème non résolu de la physique.
Comme en mécanique classique, le sujet peut être divisé en deux : la « cinématique » ; la description du mouvement en indiquant les positions, les vitesses et les accélérations, et la « dynamique » ; une description complète en considérant les énergies, les impulsions, les moments cinétiques et leurs lois de conservation, et les forces agissant sur les particules ou exercées par les particules. Il y a cependant une subtilité ; ce qui semble être « en mouvement » et ce qui est « au repos » — qui est dénommé par « statique » en mécanique classique — dépend de la vitesse relative des observateurs mesurée dans le référentiel.
La quadrivitesse relativiste, c'est-à-dire le quadrivecteur représentant la vitesse en relativité, est défini comme suit :
Ci-dessus, est le temps propre du chemin à travers l'espace-temps, appelée ligne d'univers, suivi de la vitesse de l'objet représenté ci-dessus, et
est la dimension 4; les coordonnées d'un événement.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction générale sur l'état des connaissances en physique des particules élémentaires: de la cinématique relativiste à l'interprétation phénoménologique des collisions à haute énergie.
To introduce several advanced topics in quantum physics, including
semiclassical approximation, path integral, scattering theory, and
relativistic quantum mechanics
En physique théorique, la mécanique quantique relativiste est une théorie qui tente d’unifier les postulats de la mécanique quantique non-relativiste et le principe de relativité restreinte afin de décrire la dynamique quantique d'une particule relativiste, i.e. dont la vitesse classique n'est pas très petite devant la vitesse de la lumière dans le vide. Les équations d'ondes relativistes qui généralisent l'équation de Schrödinger sont : l'équation de Klein-Gordon, qui décrit une particule massive de spin 0 ; l'équation de Dirac, qui décrit une particule massive de spin 1/2.
La mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum. It can be written as the following equation: This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m0, and momentum of magnitude p; the constant c is the speed of light.
Explore les modes de Fourier dans la théorie quantique des champs, en mettant l'accent sur les variables qui se transforment bien sous les traductions et la normalisation des états.
Context. We report the exploitation of a sample of Solar System observations based on data from the third Gaia Data Release (Gaia DR3) of nearly 157 000 asteroids. It extends the epoch astrometric solution over the time coverage planned for the Gaia DR4, w ...
Les Ulis Cedex A2023
This paper develops high-order accurate entropy stable (ES) adaptive moving mesh finite difference schemes for the two- and three-dimensional special relativistic hydrodynamic (RHD) and magnetohydrodynamic (RMHD) equations, which is the high-order accurate ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022
, ,
We determine the contribution of long-range pion interactions to the X(3872) dynamics, assuming it is a loosely bound D-0(D) over bar*(0) molecule. Our result is based on the distorted wave Born approximation in non-relativistic quantum mechanics. Despite ...