Les grandeurs extensives et intensives sont des catégories de grandeurs physiques d'un système physique :
une propriété est « intensive » si sa valeur ne dépend pas de la taille du système (en particulier, si sa valeur est la même en tout point d'un système homogène) : par exemple, la température ou la pression ;
une propriété est « extensive » si elle est proportionnelle à une quantité caractéristique du système : par exemple, la masse ou le volume.
Si deux chevaux courent côte à côte et chacun à , à eux deux, ils font un ensemble allant aussi à (la vitesse est intensive) ; par contre, à eux deux, ils font un passage deux fois plus important qu'un cheval seul (débit, puissance et masse sont doublés : ce sont des grandeurs extensives).
Le rapport entre deux propriétés extensives d'un même objet est une grandeur physique intensive. Ainsi, par exemple, le rapport entre la masse et le volume d'un objet est sa masse volumique moyenne, ce qui permet de mesurer la masse volumique intrinsèque de ce corps s'il est considéré comme homogène.
Selon une terminologie ancienne, les propriétés physiques des systèmes, des objets, et des matériaux existant dans la Nature sont souvent décrites à l'aide des notions d'extensivité et d'intensivité, suivant qu'elles font référence ou non au corps dans son ensemble. Pour Emmanuel Kant, reprenant dans sa Critique de la raison pure les catégories d’Aristote dans le projet de sa philosophie transcendantale, les deux notions se distinguent ainsi :
Ces notions réfèrent au type de dépendance relativement à la taille ou à l'extension spatiale des objets étudiés. Plus précisément, l’étendue spatiale étant divisible (jusqu'à une certaine limite — voir mousse quantique), cette distinction est fondée sur la dépendance de l'objet étudié relativement à la divisibilité de l'étendue spatiale. Inversement, une grandeur intensive peut s'apprécier dans sa quantité indépendamment de l'extension spatiale considérée.
Cette terminologie a été réintroduite de manière plus systématique dans le domaine scientifique par le physicien Richard C.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
La température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement. En physique, elle se définit de plusieurs manières : comme fonction croissante du degré d’agitation thermique des particules (en théorie cinétique des gaz), par l’équilibre des transferts thermiques entre plusieurs systèmes ou à partir de l’entropie (en thermodynamique et en physique statistique).
L’enthalpie libre, appelée aussi énergie libre de Gibbs ou simplement énergie de Gibbs, est une fonction d'état extensive introduite par Willard Gibbs, et généralement notée G. Le changement d'enthalpie libre correspond au travail maximal qui peut être extrait d'un système fermé à température et pression fixes, hors le travail dû à la variation de volume. L'enthalpie libre est reliée à l'enthalpie par la formule (où désigne la température et l'entropie), à l'énergie libre par la relation (où désigne la pression et le volume) et à l'énergie interne par la relation .
L’énergie interne d’un système thermodynamique est l'énergie qu'il renferme. C'est une fonction d'état extensive, associée à ce système. Elle est égale à la somme de l’énergie cinétique de chaque entité élémentaire de masse non nulle et de toutes les énergies potentielles d’interaction des entités élémentaires de ce système. En fait, elle correspond à l'énergie intrinsèque du système, définie à l'échelle microscopique, à l'exclusion de l'énergie cinétique ou potentielle d'interaction du système avec son environnement, à l'échelle macroscopique.
Explore la concavité de l'entropie dans les systèmes isolés avec deux sous-systèmes et la courbure des potentiels.
Explore les fondamentaux et les applications de l'énergie solaire, couvrant les caractéristiques, l'optique, la physique des semi-conducteurs, l'électrochimie et la thermochimie.
Explore la découverte primée du prix Nobel des méthodes de réplique et de cavité dans des systèmes complexes, en se concentrant sur le modèle d'énergie aléatoire et l'application de la théorie des probabilités.
Incommensurately modulated crystalline phases are part of a more general family called aperiodic crystals. Their symmetry is treated within the theoretical framework of superspace groups that is a generalization of the 3D space groups that are used for con ...
Ce cours vous apportera une compréhension des concepts fondamentaux de la thermodynamique du point de vue de la physique, de la chimie et de l’ingénierie. Il est scindé un deux MOOCs. Première partie:
Ce cours vous apportera une compréhension des concepts fondamentaux de la thermodynamique du point de vue de la physique, de la chimie et de l’ingénierie. Il est scindé un deux MOOCs. Première partie:
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Empowered by ever-increasing computational power and algorithmic developments, electronic-structure simulations continue to drive research and innovation in materials science. In this context, ab-initio calculations offer an unbiased platform for the under ...
In this paper, we consider experimental data available for graphene-based nanolubricants to evaluate their convective heat transfer performance by means of computational fluid dynamics (CFD) simulations. Single-phase models with temperature-dependent prope ...