Physical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. According to IUPAC, an intensive quantity is one whose magnitude is independent of the size of the system, whereas an extensive quantity is one whose magnitude is additive for subsystems.
The terms "intensive and extensive quantities" were introduced into physics by German writer Georg Helm in 1898, and by American physicist and chemist Richard C. Tolman in 1917.
An intensive property does not depend on the system size or the amount of material in the system. It is not necessarily homogeneously distributed in space; it can vary from place to place in a body of matter and radiation. Examples of intensive properties include temperature, T; refractive index, n; density, ρ; and hardness, η.
By contrast, extensive properties such as the mass, volume and entropy of systems are additive for subsystems.
Not all properties of matter fall into these two categories. For example, the square root of the volume is neither intensive nor extensive. For example if a system is doubled in size by juxtaposing a second identical system, the value of an intensive property equals the value for each subsystem and the value of an extensive property is twice the value for each subsystem. However the property √V is instead multiplied by √2 .
An intensive property is a physical quantity whose value does not depend on the amount of substance which was measured. The most obvious intensive quantities are ratios of extensive quantities. In a homogeneous system divided into two halves, all its extensive properties, in particular its volume and its mass, are divided into two halves. All its intensive properties, such as the mass per volume (mass density) or volume per mass (specific volume), must remain the same in each half.
The temperature of a system in thermal equilibrium is the same as the temperature of any part of it, so temperature is an intensive quantity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours vous apportera une compréhension des concepts fondamentaux de la thermodynamique du point de vue de la physique, de la chimie et de l’ingénierie. Il est scindé un deux MOOCs. Première partie:
Ce cours vous apportera une compréhension des concepts fondamentaux de la thermodynamique du point de vue de la physique, de la chimie et de l’ingénierie. Il est scindé un deux MOOCs. Première partie:
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure-volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions. The Gibbs free energy is expressed as where p is pressure, T is the temperature, U is the internal energy, V is volume, H is the enthalpy, and S is the entropy.
The internal energy of a thermodynamic system is the energy contained within it, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization. It excludes the kinetic energy of motion of the system as a whole and the potential energy of position of the system as a whole, with respect to its surroundings and external force fields.
Explores the fundamentals and applications of solar energy, covering characteristics, optics, semiconductor physics, electrochemistry, and thermochemistry.
Explores the Nobel Prize-winning discovery of replica and cavity methods in complex systems, focusing on the random energy model and the application of probability theory.
In this paper, we consider experimental data available for graphene-based nanolubricants to evaluate their convective heat transfer performance by means of computational fluid dynamics (CFD) simulations. Single-phase models with temperature-dependent prope ...
Aip Publishing2024
Empowered by ever-increasing computational power and algorithmic developments, electronic-structure simulations continue to drive research and innovation in materials science. In this context, ab-initio calculations offer an unbiased platform for the under ...
Incommensurately modulated crystalline phases are part of a more general family called aperiodic crystals. Their symmetry is treated within the theoretical framework of superspace groups that is a generalization of the 3D space groups that are used for con ...