Cours associés (22)
ME-390: Foundations of artificial intelligence
This course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
MATH-463: Mathematical modelling of behavior
Discrete choice models allow for the analysis and prediction of individuals' choice behavior. The objective of the course is to introduce both methodological and applied aspects, in the field of marke
EE-311: Fundamentals of machine learning
Ce cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
CS-423: Distributed information systems
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
MGT-502: Data science and machine learning
Hands-on introduction to data science and machine learning. We explore recommender systems, generative AI, chatbots, graphs, as well as regression, classification, clustering, dimensionality reduction
BIO-645: Introduction to Applied Data Science (I2ADS)
The "Introduction to Applied Data Science" (I2ADS) course is aimed at students of all levels to train them in the core computer science software stack and techniques forming the pillars of open & repr
CS-401: Applied data analysis
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
EE-566: Adaptation and learning
In this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
MATH-412: Statistical machine learning
A course on statistical machine learning for supervised and unsupervised learning

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.