Concept

Stabilité de Von Neumann

Résumé
En analyse numérique, l'analyse de stabilité de von Neumann est un procédé permettant de vérifier la stabilité numérique de schémas utilisant la méthode des différences finies pour des équations aux dérivées partielles. Cette analyse est basée sur la décomposition de l'erreur numérique en série de Fourier et fut développée au Laboratoire national de Los Alamos après avoir été brièvement décrite dans un article de Crank et Nicolson. Plus tard, la méthode fut traitée de manière plus rigoureuse dans un article coécrit par von Neumann. La stabilité d'un schéma numérique est intimement liée à l'erreur numérique. Un schéma de différences finies est dit stable si les erreurs commises en un pas de temps ne font pas augmenter les erreurs au fil des itérations. Si les erreurs diminuent et finissent par s'estomper, le schéma numérique est dit stable. Si au contraire, l'erreur croît à chaque itération, le schéma est dit instable. La stabilité d'un schéma peut être déterminée grâce à l'analyse de von Neumann. Pour des problèmes dépendants du temps, la stabilité garantit qu'une méthode numérique produise une solution bornée lorsque la solution de l'équation différentielle exacte est bornée. La stabilité d'un schéma peut être ardue, surtout lorsque l'équation considérée est non linéaire. Dans certains cas, la stabilité de von Neumann est suffisante et nécessaire pour la stabilité au sens de Lax–Richtmyer (comme utilisée dans le théorème de Lax): l'EDP et le schéma aux différences finies sont linéaires ; l'EDP est à coefficients constants avec des conditions de bord périodiques et dépend de deux variables indépendantes ; et le schéma n'utilise pas plus de deux niveaux de temps. La stabilité de von Neumann est nécessaire dans une bien plus vaste variété de cas. La relative simplicité de cette méthode implique qu'elle est souvent utilisée à la place d'une analyse de stabilité plus détaillée afin de donner une bonne idée des restrictions sur les tailles des pas. La méthode de von Neumann est basée sur la décomposition de l'erreur en séries de Fourier.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.