In mathematics, the tent map with parameter μ is the real-valued function fμ defined by the name being due to the tent-like shape of the graph of fμ. For the values of the parameter μ within 0 and 2, fμ the unit interval [0, 1] into itself, thus defining a discrete-time dynamical system on it (equivalently, a recurrence relation). In particular, iterating a point x0 in [0, 1] gives rise to a sequence : where μ is a positive real constant. Choosing for instance the parameter μ = 2, the effect of the function fμ may be viewed as the result of the operation of folding the unit interval in two, then stretching the resulting interval [0, 1/2] to get again the interval [0, 1]. Iterating the procedure, any point x0 of the interval assumes new subsequent positions as described above, generating a sequence xn in [0, 1]. The case of the tent map is a non-linear transformation of both the bit shift map and the r = 4 case of the logistic map. The tent map with parameter μ = 2 and the logistic map with parameter r = 4 are topologically conjugate, and thus the behaviours of the two maps are in this sense identical under iteration. Depending on the value of μ, the tent map demonstrates a range of dynamical behaviour ranging from predictable to chaotic. If μ is less than 1 the point x = 0 is an attractive fixed point of the system for all initial values of x i.e. the system will converge towards x = 0 from any initial value of x. If μ is 1 all values of x less than or equal to 1/2 are fixed points of the system. If μ is greater than 1 the system has two fixed points, one at 0, and the other at μ/(μ + 1). Both fixed points are unstable, i.e. a value of x close to either fixed point will move away from it, rather than towards it. For example, when μ is 1.5 there is a fixed point at x = 0.6 (since 1.5(1 − 0.6) = 0.6) but starting at x = 0.61 we get If μ is between 1 and the square root of 2 the system maps a set of intervals between μ − μ2/2 and μ/2 to themselves. This set of intervals is the Julia set of the map – that is, it is the smallest invariant subset of the real line under this map.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
BIO-341: Dynamical systems in biology
Life is non-linear. This course introduces dynamical systems as a technique for modelling simple biological processes. The emphasis is on the qualitative and numerical analysis of non-linear dynamical
COM-502: Dynamical system theory for engineers
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
PHYS-460: Nonlinear dynamics, chaos and complex systems
The course provides students with the tools to approach the study of nonlinear systems and chaotic dynamics. Emphasis is given to concrete examples and numerical applications are carried out during th
Afficher plus
Séances de cours associées (15)
Stabilité des solutions périodiques des systèmes à temps continu
Explore la stabilité des solutions périodiques dans les systèmes à temps continu à l'aide de la carte logistique et de l'oscillateur van der Pol.
Fractales et théorie du chaos
Explore des cartes chaotiques, des dimensions fractales et d'étranges attracteurs dans des systèmes dynamiques.
Dynamiques non linéaires et chaos
Couvre les bifurcations, la dynamique à long terme, la carte logistique, l'universalité et la correspondance entre les différentes cartes.
Afficher plus
Publications associées (14)

Correcting for non-periodic behaviour in perturbative experiments: application to heat pulse propagation and modulated gas-puff experiments

Federico Alberto Alfredo Felici, Cristian Galperti

This paper introduces a recent innovation in dealing with non-periodic behavior often referred to as transients in perturbative experiments. These transients can be the result from the unforced response due to the initial condition and other slow trends in ...
2020

Topographical instability of event-related potentials in P300 wave study

Vitaly Chicherov

Microstate analysis of ERP and EEG topographies reveals stable patterns of brain activity. Little is known about the changes from one stable state to another. During such changes significant topographic instabilities are observed together with low ERP fiel ...
2011

Noise induced temporal patterns in populations of globally coupled oscillators

Max-Olivier Hongler, Roger Filliger, Philippe Blanchard, Julio Rodriguez

The population dynamics of an assembly of globally coupled homogeneous phase oscillators is studied in presence of non-Gaussian fluctuations. The variance of the underlying stochastic process grows as t + \beta^2 t^2 ( \beta being a constant) and therefore ...
Shaker Verlag2009
Afficher plus
Concepts associés (7)
Décalage de Bernoulli (mathématiques)
Le décalage de Bernoulli (également connu comme fonction dyadique ou fonction 2x mod 1) est l'application produite par la règle De façon équivalente, le décalage de Bernoulli peut également être défini comme la fonction itérée de la fonction affine par parties Le décalage de Bernoulli fournit un exemple de la manière dont une simple fonction unidimensionnelle peut mener au chaos. Si x0 est rationnel, l'image de x0 contient un nombre fini de valeurs différentes dans [0 ; 1] et l'orbite positive de x0 est périodique à partir d'un certain point, avec la même période que le développement binaire de x0.
Transformation du boulanger
La transformation du boulanger est une transformation basée sur l'idée d'un mélange analogue au pétrissage par un boulanger qui étire une pâte jusqu'à ce qu'elle soit d'épaisseur moitié, puis la coupe en deux et superpose les deux moitiés pour lui redonner sa dimension initiale, et ainsi de suite. Ce mélange est souvent évoqué en théorie du chaos. Dans ce cas, il s'agit d'une version continue de la transformation. Une version discrète de cette transformation existe aussi pour manipuler des images informatiques.
Fonction itérée
En mathématiques, une fonction itérée est une fonction obtenue par composition répétée d’une autre fonction avec elle-même un certain nombre de fois. La procédure consistant à appliquer la même fonction à plusieurs reprises s’appelle itération. Les fonctions itérées apparaissent en informatique, dans les systèmes dynamiques, les groupes de renormalisation et sont à la base des fractales. L’itérée, plus précisément la deuxième itérée, d’une fonction f , définie sur un ensemble X et à valeurs dans ce même ensemble X, est la fonction où note la composition de fonctions.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.