Concept

Vandermonde polynomial

In algebra, the Vandermonde polynomial of an ordered set of n variables , named after Alexandre-Théophile Vandermonde, is the polynomial: (Some sources use the opposite order , which changes the sign times: thus in some dimensions the two formulas agree in sign, while in others they have opposite signs.) It is also called the Vandermonde determinant, as it is the determinant of the Vandermonde matrix. The value depends on the order of the terms: it is an alternating polynomial, not a symmetric polynomial. The defining property of the Vandermonde polynomial is that it is alternating in the entries, meaning that permuting the by an odd permutation changes the sign, while permuting them by an even permutation does not change the value of the polynomial – in fact, it is the basic alternating polynomial, as will be made precise below. It thus depends on the order, and is zero if two entries are equal – this also follows from the formula, but is also consequence of being alternating: if two variables are equal, then switching them both does not change the value and inverts the value, yielding and thus (assuming the characteristic is not 2, otherwise being alternating is equivalent to being symmetric). Conversely, the Vandermonde polynomial is a factor of every alternating polynomial: as shown above, an alternating polynomial vanishes if any two variables are equal, and thus must have as a factor for all . Alternating polynomial Thus, the Vandermonde polynomial (together with the symmetric polynomials) generates the alternating polynomials. Its square is widely called the discriminant, though some sources call the Vandermonde polynomial itself the discriminant. The discriminant (the square of the Vandermonde polynomial: ) does not depend on the order of terms, as , and is thus an invariant of the unordered set of points. If one adjoins the Vandermonde polynomial to the ring of symmetric polynomials in n variables , one obtains the quadratic extension , which is the ring of alternating polynomials.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.