In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. It can also be related to the relativistic velocity addition formula.
Describing relations of hyperbolic geometry, Franz Taurinus showed in 1826 that the spherical law of cosines can be related to spheres of imaginary radius, thus he arrived at the hyperbolic law of cosines in the form:
which was also shown by Nikolai Lobachevsky (1830):
Ferdinand Minding gave it in relation to surfaces of constant negative curvature:
as did Delfino Codazzi in 1857:
The relation to relativity using rapidity was shown by Arnold Sommerfeld in 1909 and Vladimir Varićak in 1910.
Take a hyperbolic plane whose Gaussian curvature is . Given a hyperbolic triangle with angles and side lengths , , and , the following two rules hold. The first is an analogue of Euclidean law of cosines, expressing the length of one side in terms of the other two and the angle between the latter:
The second law has no Euclidean analogue, since it expresses the fact that lengths of sides of a hyperbolic triangle are determined by the interior angles:
Houzel indicates that the hyperbolic law of cosines implies the angle of parallelism in the case of an ideal hyperbolic triangle:
When that is when the vertex A is rejected to infinity and the sides BA and CA are "parallel", the first member equals 1; let us suppose in addition that so that and The angle at B takes a value β given by this angle was later called "angle of parallelism" and Lobachevsky noted it by "F(a)" or "Π(a)".
In cases where is small, and being solved for, the numerical precision of the standard form of the hyperbolic law of cosines will drop due to rounding errors, for exactly the same reason it does in the Spherical law of cosines. The hyperbolic version of the law of haversines can prove useful in this case:
Setting in (), and by using hype
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
thumb|right|alt=Triangle rectangle et relation algébrique entre les longueurs de ses côtés.|Relation entre les longueurs des côtés dans un triangle rectangle. Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle. Il s'énonce fréquemment sous la forme suivante : Si un triangle est rectangle, le carré de la longueur de l’hypoténuse (ou côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés.
Poincaré's uniformisation theorem says that any Riemann surface is conformally equivalent to a unique (up to isometry) surface of constant Gauss curvature 0, 1 or –1. The (topologically) richest of these three worlds is for curvature –1 formed of hyperboli ...
The leitmotif of this dissertation is the search for length formulas and sharp constants in relation with simple closed geodesics on hyperbolic compact Riemann surfaces. The main tools used are those of hyperbolic trigonometry, topological properties of si ...
EPFL2004
In this project we address the numerical approximation of hyperbolic equations and systems using the discontinuous Galerkin (DG) method in combination with higher order polynomial degrees. In short, this is called Spectral Discontinuous Galerkin (SDG) meth ...