Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des cadres de référence, des coordonnées, une masse de points, une trajectoire, une vitesse, une accélération et un mouvement avec une accélération constante.
Explore le compromis entre la complexité et le risque dans les modèles d'apprentissage automatique, les avantages de la surparamétrisation et le biais implicite des algorithmes d'optimisation.
Explore les équations de transport hyperboliques et les schémas numériques, en mettant l'accent sur les méthodes et les caractéristiques d'ordre supérieur pour des solutions exactes.
Couvre la renormalisation en théorie algébrique des champs quantiques, en se concentrant sur les diagrammes à deux boucles et le groupe de renormalisation.
Explore l'optimisation pratique en utilisant Manopt pour les collecteurs, couvrant les contrôles de gradient, les erreurs d'approximation, et les calculs Hessian.
Explore les modèles linéaires, les surajustements et l'importance de l'expansion des fonctionnalités et ajoute plus de données pour réduire les surajustements.
Explore la section transversale, le taux de désintégration et la série Dyson en turbulence, mettant l'accent sur la division appropriée et l'invariance de Lorentz.