The primary application of wind turbines is to generate energy using the wind. Hence, the aerodynamics is a very important aspect of wind turbines. Like most machines, wind turbines come in many different types, all of them based on different energy extraction concepts. Though the details of the aerodynamics depend very much on the topology, some fundamental concepts apply to all turbines. Every topology has a maximum power for a given flow, and some topologies are better than others. The method used to extract power has a strong influence on this. In general, all turbines may be classified as either lift-based or drag-based, the former being more efficient. The difference between these groups is the aerodynamic force that is used to extract the energy. The most common topology is the horizontal-axis wind turbine. It is a lift-based wind turbine with very good performance. Accordingly, it is a popular choice for commercial applications and much research has been applied to this turbine. Despite being a popular lift-based alternative in the latter part of the 20th century, the Darrieus wind turbine is rarely used today. The Savonius wind turbine is the most common drag type turbine. Despite its low efficiency, it remains in use because of its robustness and simplicity to build and maintain. The governing equation for power extraction is: where P is the power, F is the force vector, and v is the velocity of the moving wind turbine part. The force F is generated by the wind's interaction with the blade. The magnitude and distribution of this force is the primary focus of wind-turbine aerodynamics. The most familiar type of aerodynamic force is drag. The direction of the drag force is parallel to the relative wind. Typically, the wind turbine parts are moving, altering the flow around the part. An example of relative wind is the wind one would feel cycling on a calm day. To extract power, the turbine part must move in the direction of the net force. In the drag force case, the relative wind speed decreases subsequently, and so does the drag force.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
ENV-424: Water resources engineering
Water resources engineering designs systems to control the quantity, quality, timing, and distribution of water to support human demands and the needs of the environment.
ENG-612: Power electronics for renewable applications
Introduction to key aspects of power-electronics utilization in renewable energy applications, including the basic operation principles, system-level properties, control, and modeling. Practical exper
ME-342: Introduction to turbomachinery
L'étudiant se familiarise avec les domaines de turbomachines thermiques et hydrauliques et les différents types de machines dans ce domaine. Il étudie les outils de base de conception et d'évaluation.
Afficher plus
Concepts associés (2)
Éolienne
Une éolienne est un dispositif qui transforme l'énergie cinétique du vent en énergie mécanique, dite énergie éolienne, laquelle est ensuite le plus souvent transformée en énergie électrique. Les éoliennes produisant de l'électricité sont appelées « aérogénérateurs », tandis que les éoliennes qui pompent directement de l'eau sont parfois dénommées « éoliennes de pompage » ou « pompes à vent ». Une forme ancienne d'éolienne est le moulin à vent.
Énergie éolienne
L’énergie éolienne est l'énergie du vent, dont la force motrice (énergie cinétique) est utilisée dans le déplacement de voiliers et autres véhicules ou transformée au moyen d'un dispositif aérogénérateur, comme une éolienne ou un moulin à vent, en une énergie diversement utilisable. L'énergie éolienne est une énergie renouvelable. L'énergie éolienne est une source d'énergie intermittente qui n'est pas produite à la demande, mais selon les conditions météorologiques ; elle nécessite donc des installations de production ou de stockage en remplacement pendant ses périodes d'indisponibilité.
MOOCs associés (1)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.