Relativistic heat conduction refers to the modelling of heat conduction (and similar diffusion processes) in a way compatible with special relativity. In special (and general) relativity, the usual heat equation for non-relativistic heat conduction must be modified, as it leads to faster-than-light signal propagation. Relativistic heat conduction, therefore, encompasses a set of models for heat propagation in continuous media (solids, fluids, gases) that are consistent with relativistic causality, namely the principle that an effect must be within the light-cone associated to its cause. Any reasonable relativistic model for heat conduction must also be stable, in the sense that differences in temperature propagate both slower than light and are damped over time (this stability property is intimately intertwined with relativistic causality). Heat conduction in a Newtonian context is modelled by the Fourier equation, namely a parabolic partial differential equation of the kind: where θ is temperature, t is time, α = k/(ρ c) is thermal diffusivity, k is thermal conductivity, ρ is density, and c is specific heat capacity. The Laplace operator,, is defined in Cartesian coordinates as This Fourier equation can be derived by substituting Fourier’s linear approximation of the heat flux vector, q, as a function of temperature gradient, into the first law of thermodynamics where the del operator, ∇, is defined in 3D as It can be shown that this definition of the heat flux vector also satisfies the second law of thermodynamics, where s is specific entropy and σ is entropy production. This mathematical model is inconsistent with special relativity: the Green function associated to the heat equation (also known as heat kernel) has support that extends outside the light-cone, leading to faster-than-light propagation of information. For example, consider a pulse of heat at the origin; then according to Fourier equation, it is felt (i.e. temperature changes) at any distant point, instantaneously.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
PHYS-106(a): General physics : thermodynamics
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
ME-446: Two-phase flows and heat transfer
This course covers the fundamental and practical analysis of two-phase flow and heat transfer in various contexts including power generation, water purification, and cooling. Students will learn about
ChE-204: Introduction to transport phenomena
This course aims at understanding the basic equations behind macroscopic and microscopic transport phenomena (mass, heat and momentum).
Afficher plus
Séances de cours associées (54)
Méthode des éléments finis : Applications et formulations
Explore l'application et la formulation de la méthode des éléments finis dans la résolution de divers problèmes d'ingénierie.
Correction d'altitude de vol
Couvre la correction de l'altitude d'un avion lors d'une urgence de vol à l'aide d'éléments finis.
La méthode du volume fini
Couvre la méthode du volume fini pour la simulation numérique de l'écoulement, y compris les équations de conservation, les méthodes de discrétisation et les conditions aux limites.
Afficher plus
Publications associées (37)
Concepts associés (6)
Équation de la chaleur
En mathématiques et en physique théorique, l'équation de la chaleur est une équation aux dérivées partielles parabolique, pour décrire le phénomène physique de conduction thermique, introduite initialement en 1807 par Joseph Fourier, après des expériences sur la propagation de la chaleur, suivies par la modélisation de l'évolution de la température avec des séries trigonométriques, appelés depuis séries de Fourier et transformées de Fourier, permettant une grande amélioration à la modélisation mathématique
Conduction thermique
La conduction thermique (ou diffusion thermique) est un mode de transfert thermique provoqué par une différence de température entre deux régions d'un même milieu, ou entre deux milieux en contact, et se réalisant sans déplacement global de matière (à l'échelle macroscopique) par opposition à la convection qui est un autre mode de transfert thermique. Elle peut s'interpréter comme la transmission de proche en proche de l'agitation thermique : un atome (ou une molécule) cède une partie de son énergie cinétique à l'atome voisin.
Diffusion de la matière
La diffusion de la matière, ou diffusion chimique, désigne la tendance naturelle d'un système à rendre uniforme le potentiel chimique de chacune des espèces chimiques qu'il comporte. La diffusion chimique est un phénomène de transport irréversible qui tend à homogénéiser la composition du milieu. Dans le cas d'un mélange binaire et en l'absence des gradients de température et de pression, la diffusion se fait des régions de plus forte concentration vers les régions de concentration moindre.
Afficher plus