Résumé
En mathématiques et en physique théorique, l'équation de la chaleur est une équation aux dérivées partielles parabolique, pour décrire le phénomène physique de conduction thermique, introduite initialement en 1807 par Joseph Fourier, après des expériences sur la propagation de la chaleur, suivies par la modélisation de l'évolution de la température avec des séries trigonométriques, appelés depuis séries de Fourier et transformées de Fourier, permettant une grande amélioration à la modélisation mathématique des phénomènes, en particulier pour les fondements de la thermodynamique, et qui ont entrainé aussi des travaux mathématiques très importants pour les rendre rigoureuses, véritable révolution à la fois physique et mathématique, sur plus d'un siècle. Une variante de cette équation est très présente en physique sous le nom générique d'équation de diffusion. On la retrouve dans la diffusion de masse dans un milieu binaire ou de charge électrique dans un conducteur, le transfert radiatif, etc. Elle est également liée à l'équation de Burgers et à l'équation de Schrödinger. Équation de conservation On peut définir une loi de conservation pour une variable extensive entraînée à la vitesse et comportant un terme de production volumique par : Dans notre cas on prendra : {| |- | || enthalpie volumique (en ), |- | || masse volumique (en ), |- | || chaleur spécifique à pression constante (en ), |- | || chaleur de formation à la température T, arbitraire (on prend généralement 293 K), |- | || vitesse de diffusion de l'énergie dans le milieu (en ), |- | || flux de diffusion (en ), à exprimer, |} L'équation de la chaleur s'exprimera donc sous la forme suivante : ou La propagation de l'énergie se fait par un mécanisme brownien de phonons et de porteurs de charge électrique (électrons ou trous), donc à une échelle caractéristique très petite devant celles du problème macroscopique. Il est donc décrit par une équation de type diffusion, la loi de Fourier : où est la conductivité thermique (en ), une quantité scalaire qui dépend de la composition et de l'état physique du milieu à travers lequel diffuse la chaleur, et en général aussi de la température.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (41)
Fonction de Green
En mathématiques et en physique, une fonction de Green est une solution (également appelée solution élémentaire ou solution fondamentale) d'une équation différentielle linéaire à coefficients constants, ou d'une équation aux dérivées partielles linéaire à coefficients constants. Ces « fonctions » de Green, qui se trouvent être le plus souvent des distributions, ont été introduites par George Green en 1828 pour les besoins de l'électromagnétisme. Le mémoire de Green restera confidentiel jusqu'à sa republication en trois parties, à partir de 1850.
Équation différentielle
En mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Opérateur laplacien
L'opérateur laplacien, ou simplement le laplacien, est l'opérateur différentiel défini par l'application de l'opérateur gradient suivie de l'application de l'opérateur divergence : Intuitivement, il combine et relie la description statique d'un champ (décrit par son gradient) aux effets dynamiques (la divergence) de ce champ dans l'espace et le temps. C'est l'exemple le plus simple et le plus répandu d'opérateur elliptique.
Afficher plus