In vector computer graphics, CAD systems, and geographic information systems, geometric primitive (or prim) is the simplest (i.e. 'atomic' or irreducible) geometric shape that the system can handle (draw, store). Sometimes the subroutines that draw the corresponding objects are called "geometric primitives" as well. The most "primitive" primitives are point and straight line segment, which were all that early vector graphics systems had.
In constructive solid geometry, primitives are simple geometric shapes such as a cube, cylinder, sphere, cone, pyramid, torus.
Modern 2D computer graphics systems may operate with primitives which are curves (segments of straight lines, circles and more complicated curves), as well as shapes (boxes, arbitrary polygons, circles).
A common set of two-dimensional primitives includes lines, points, and polygons, although some people prefer to consider triangles primitives, because every polygon can be constructed from triangles. All other graphic elements are built up from these primitives. In three dimensions, triangles or polygons positioned in three-dimensional space can be used as primitives to model more complex 3D forms. In some cases, curves (such as Bézier curves, circles, etc.) may be considered primitives; in other cases, curves are complex forms created from many straight, primitive shapes.
The set of geometric primitives is based on the dimension of the region being represented:
Point (0-dimensional), a single location with no height, width, or depth.
Line or curve (1-dimensional), having length but no width, although a linear feature may curve through a higher-dimensional space.
Planar surface or curved surface (2-dimensional), having length and width.
Volumetric region or solid (3-dimensional), having length, width, and depth.
In GIS, the terrain surface is often spoken of colloquially as "2 1/2 dimensional," because only the upper surface needs to be represented. Thus, elevation can be conceptualized as a scalar field property or function of two-dimensional space, affording it a number of data modeling efficiencies over true 3-dimensional objects.