Résumé
Space–time block coding is a technique used in wireless communications to transmit multiple copies of a data stream across a number of antennas and to exploit the various received versions of the data to improve the reliability of data transfer. The fact that the transmitted signal must traverse a potentially difficult environment with scattering, reflection, refraction and so on and may then be further corrupted by thermal noise in the receiver means that some of the received copies of the data may be closer to the original signal than others. This redundancy results in a higher chance of being able to use one or more of the received copies to correctly decode the received signal. In fact, space–time coding combines all the copies of the received signal in an optimal way to extract as much information from each of them as possible. Most work on wireless communications until the early 1990s had focused on having an antenna array at only one end of the wireless link — usually at the receiver. Seminal papers by Gerard J. Foschini and Michael J. Gans, Foschini and Emre Telatar enlarged the scope of wireless communication possibilities by showing that for the highly scattering environment, substantial capacity gains are enabled when antenna arrays are used at both ends of a link. An alternative approach to utilizing multiple antennas relies on having multiple transmit antennas and only optionally multiple receive antennas. Proposed by Vahid Tarokh, Nambi Seshadri and Robert Calderbank, these space–time codes (STCs) achieve significant error rate improvements over single-antenna systems. Their original scheme was based on trellis codes but the simpler block codes were utilised by Siavash Alamouti, and later Vahid Tarokh, Hamid Jafarkhani and Robert Calderbank to develop space–time block-codes (STBCs). STC involves the transmission of multiple redundant copies of data to compensate for fading and thermal noise in the hope that some of them may arrive at the receiver in a better state than others.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (1)

Space-time codes of maximal size in MIMO communication

Daniele Rotanzi

Reliability of any communication technology, such as wireless channels, can be measured by the probability of incorrect decoding of a sent message. The lower is this probability the more reliable is t
2010
Personnes associées (2)
Concepts associés (2)
Space–time code
A space–time code (STC) is a method employed to improve the reliability of data transmission in wireless communication systems using multiple transmit antennas. STCs rely on transmitting multiple, redundant copies of a data stream to the receiver in the hope that at least some of them may survive the physical path between transmission and reception in a good enough state to allow reliable decoding. Space time codes may be split into two main types: Space–time trellis codes (STTCs) distribute a trellis code over multiple antennas and multiple time-slots and provide both coding gain and diversity gain.
Space–time block code
Space–time block coding is a technique used in wireless communications to transmit multiple copies of a data stream across a number of antennas and to exploit the various received versions of the data to improve the reliability of data transfer. The fact that the transmitted signal must traverse a potentially difficult environment with scattering, reflection, refraction and so on and may then be further corrupted by thermal noise in the receiver means that some of the received copies of the data may be closer to the original signal than others.
Cours associés (6)
COM-404: Information theory and coding
The mathematical principles of communication that govern the compression and transmission of data and the design of efficient methods of doing so.
COM-302: Principles of digital communications
This course is on the foundations of digital communication. The focus is on the transmission problem (rather than being on source coding).
EE-543: Advanced wireless receivers
Students extend their knowledge on wireless communication systems to spread-spectrum communication and to multi-antenna systems. They also learn about the basic information theoretic concepts, about c
Afficher plus