Publications associées (160)

Thread-Placement Learning

Rachid Guerraoui, Vasileios Trigonakis, Karolos Antoniadis

In a non-uniform memory access machine, the placement of software threads to hardware cores can have a significant effect on the performance of concurrent applications. Detecting the best possible placement for each application is a necessity for thread sc ...
IEEE COMPUTER SOC2020

Disentangling feature and lazy training in deep neural networks

Matthieu Wyart, Mario Geiger, Stefano Spigler, Arthur Jacot

Two distinct limits for deep learning have been derived as the network width h -> infinity, depending on how the weights of the last layer scale with h. In the neural tangent Kernel (NTK) limit, the dynamics becomes linear in the weights and is described b ...
IOP PUBLISHING LTD2020

Snap-On User-Space Manager for Dynamically Reconfigurable System-on-Chips

Paolo Ienne, Andrea Guerrieri, Sahand Kashani

Due to increased embedded processing requirements, modern SoCs are becoming heterogeneous computing platforms by combining traditional processing units with custom reconfigurable hardware accelerators (HAs) on an FPGA fabric. However, efficiently managing ...
2019

i-DPs CGRA: An Interleaved-Datapaths Reconfigurable Accelerator for Embedded Bio-signal Processing

David Atienza Alonso, Giovanni Ansaloni, Miguel Peon Quiros, Soumya Subhra Basu, Loris Gérard Duch

Smart edge sensors for bio-signal monitoring must support complex signal processing routines within an extremely small energy envelope. Coarse-Grained Reconfigurable Arrays (CGRAs) are good candidates for tackling these conflicting objectives because, than ...
2019

Fully-Asynchronous Cache-Efficient Simulation of Detailed Neural Networks

Felix Schürmann, Michael Lee Hines

Modern asynchronous runtime systems allow the re-thinking of large-scale scientific applications. With the example of a simulator of morphologically detailed neural networks, we show how detaching from the commonly used bulk-synchronous parallel (BSP) exec ...
SPRINGER INTERNATIONAL PUBLISHING AG2019

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.