Degré de TuringEn informatique et en logique mathématique, le degré de Turing (nommé d'après Alan Turing) ou le degré d'insolubilité d'un ensemble d'entiers naturels mesure le niveau d'insolubilité algorithmique de l'ensemble. Le concept de degré de Turing est fondamental dans la théorie de la calculabilité, où des ensembles d'entiers naturels sont souvent considérés comme des problèmes de décision. Le degré de Turing d'un ensemble révèle combien il est difficile de résoudre le problème de décision associé à cet ensemble, à savoir, déterminer si un nombre arbitraire est dans l'ensemble donné.
Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
Saut de TuringEn théorie de la calculabilité, le saut de Turing, du nom d'Alan Turing, est une opération qui attribue à chaque problème de décision un problème de décision plus difficile avec la propriété que n'est pas décidable par une machine à oracle relative à . Le saut est appelé opérateur de saut car il augmente le degré de Turing du problème . Autrement dit, le problème n'est pas à . Le théorème de Post établit une relation entre l'opérateur de saut de Turing et la hiérarchie arithmétique des ensembles de nombres naturels.
Oracle (machine de Turing)vignette|upright=2|Une machine de Turing avec oracle peut faire appel à une boîte noire (oracle). En théorie de la complexité ou de la calculabilité, les machines de Turing avec oracle sont une variante des machines de Turing disposant d'une boîte noire, un oracle, capable de résoudre un problème de décision en une seule opération élémentaire. En particulier, l'oracle peut résoudre en temps constant un problème indécidable comme le problème de l'arrêt.
Effective methodIn logic, mathematics and computer science, especially metalogic and computability theory, an effective method or effective procedure is a procedure for solving a problem by any intuitively 'effective' means from a specific class. An effective method is sometimes also called a mechanical method or procedure. The definition of an effective method involves more than the method itself. In order for a method to be called effective, it must be considered with respect to a class of problems.
EnumerationAn enumeration is a complete, ordered listing of all the items in a collection. The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration (for example, whether the set must be finite, or whether the list is allowed to contain repetitions) depend on the discipline of study and the context of a given problem. Some sets can be enumerated by means of a natural ordering (such as 1, 2, 3, 4, ...
Definable real numberInformally, a definable real number is a real number that can be uniquely specified by its description. The description may be expressed as a construction or as a formula of a formal language. For example, the positive square root of 2, , can be defined as the unique positive solution to the equation , and it can be constructed with a compass and straightedge. Different choices of a formal language or its interpretation give rise to different notions of definability.
Fonction récursiveEn informatique et en mathématiques, le terme fonction récursive ou fonction calculable désigne la classe de fonctions dont les valeurs peuvent être calculées à partir de leurs paramètres par un processus mécanique fini. En fait, cela fait référence à deux concepts liés, mais distincts. En théorie de la calculabilité, la classe des fonctions récursives est une classe plus générale que celle des fonctions récursives primitives, mais plus restreinte que celle des fonctions semi-calculables (ou partielles récursives).
Fonction récursive primitiveEn théorie de la calculabilité, une fonction récursive primitive est une fonction construite à partir de la fonction nulle, de la fonction successeur, des fonctions projections et des schémas de récursion primitive (ou bornée) et de composition. Ces fonctions constituent un sous-ensemble strict des fonctions récursives. Elles ont été initialement analysées par la mathématicienne Rózsa Péter. On s'intéresse aux fonctions définies sur l'ensemble des entiers naturels, ou sur les ensembles des -uplets d'entiers naturels, et à valeurs dans .
Problème de la décisionEn logique mathématique, on appelle problème de la décision ou, sous son nom d'origine en allemand, Entscheidungsproblem, le fait de déterminer de façon mécanique (par un algorithme) si un énoncé est un théorème de la logique égalitaire du premier ordre, c’est-à-dire s'il se dérive dans un système de déduction sans autres axiomes que ceux de l'égalité (exemples : système à la Hilbert, calcul des séquents, déduction naturelle).