Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des réseaux neuronaux convolutionnels pour le traitement de l'image, couvrant les composants de base, les architectures et les applications pratiques, y compris la dénouement et la segmentation.
Explore les modèles Seq2Seq avec et sans mécanismes d'attention, couvrant l'architecture encodeur-décodeur, les vecteurs de contexte, les processus de décodage et les différents types de mécanismes d'attention.
Déplacez-vous dans les potentiels interatomiques de la machine appris, montrant leur précision et leur rentabilité dans la prédiction des propriétés chimiques.
Couvre les techniques de réduction de dimensionnalité non linéaire à l'aide d'autoencodeurs, d'autoencodeurs profonds et d'autoencodeurs convolutifs pour diverses applications.
Explore la résonance magnétique nucléaire, les principes d'IRM, les séquences de pouls, la reconstruction d'images, les considérations de sûreté et la normalisation du volume dans l'imagerie cérébrale.
Couvre l'optimalité des taux de convergence dans les méthodes de descente en gradient accéléré et stochastique pour les problèmes d'optimisation non convexes.
Explore le paradigme de l'apprentissage profond, y compris les défis, les réseaux neuronaux, la robustesse, l'équité, l'interprétabilité et l'efficacité énergétique.