Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'apprentissage par machine contradictoire, les réseaux d'adversaires génériques et les défis des exemples d'adversaires dans l'optimisation des données.
Explore les algorithmes de consensus qui varient dans le temps dans les systèmes de contrôle en réseau et le rôle de la matrice laplacienne dans l'obtention d'un consensus moyen.
Offre des informations sur la physique statistique de l'apprentissage, explorant la relation entre la structure du réseau neuronal et les systèmes désordonnés.
Explore comment les architectures modernes ont vaincu la malédiction de la dimensionnalité et l'importance de la stabilité dans les modèles d'apprentissage en profondeur.
Explore le surajustement, la régularisation et la validation croisée dans l'apprentissage automatique, soulignant l'importance de l'expansion des fonctionnalités et des méthodes du noyau.
Couvre les outils de physique statistique pour l'optimisation, l'apprentissage, la coloration graphique, les systèmes de recommandation et les réseaux neuronaux.