In topology, the pasting or gluing lemma, and sometimes the gluing rule, is an important result which says that two continuous functions can be "glued together" to create another continuous function. The lemma is implicit in the use of piecewise functions. For example, in the book Topology and Groupoids, where the condition given for the statement below is that and The pasting lemma is crucial to the construction of the fundamental group or fundamental groupoid of a topological space; it allows one to concatenate continuous paths to create a new continuous path. Let be both closed (or both open) subsets of a topological space such that , and let also be a topological space. If is continuous when restricted to both and then is continuous. This result allows one to take two continuous functions defined on closed (or open) subsets of a topological space and create a new one. Proof: if is a closed subset of then and are both closed since each is the preimage of when restricted to and respectively, which by assumption are continuous. Then their union, is also closed, being a finite union of closed sets. A similar argument applies when and are both open. The infinite analog of this result (where ) is not true for closed For instance, the inclusion map from the integers to the real line (with the integers equipped with the cofinite topology) is continuous when restricted to an integer, but the inverse image of a bounded open set in the reals with this map is at most a finite number of points, so not open in It is, however, true if the form a locally finite collection since a union of locally finite closed sets is closed. Similarly, it is true if the are instead assumed to be open since a union of open sets is open.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.