We consider the problem of comparing several samples of stochastic processes with respect to their second-order structure, and describing the main modes of variation in this second order structure, if present. These tasks can be seen as an Analysis of Vari ...
Kontsevich and Soibelman reformulated and slightly generalised the topological recursion of [43], seeing it as a quantisation of certain quadratic Lagrangians in T*V for some vector space V. KS topological recursion is a procedure which takes as initial da ...
In this thesis, we propose to formally derive amplitude equations governing the weakly nonlinear evolution of non-normal dynamical systems, when they respond to harmonic or stochastic forcing, or to an initial condition. This approach reconciles the non-mo ...
Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...
We generalize the fixed-point property for discrete groups acting on convex cones given by Monod in [23] to topological groups. At first, we focus on describing this fixed-point property from a functional point of view, and then we look at the class of gro ...
Since the birth of Information Theory, researchers have defined and exploited various information measures, as well as endowed them with operational meanings. Some were born as a "solution to a problem", like Shannon's Entropy and Mutual Information. Other ...
In a world that seeks to describe, codify and quantify everything, and particularly our viscerality and its interactions with our actual and digital environments, can we find interstitial spaces, currently unseen, unobserved and unlegislated, where we migh ...
The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space, Kashiwara-Schapira have recently in ...
We prove that under certain mild moment and continuity assumptions, the d-dimensional continuum Gaussian free field is the only stochastic process satisfying the usual domain Markov property and a scaling assumption. Our proof is based on a decomposition o ...
We study the problem of estimating an unknown function from noisy data using shallow ReLU neural networks. The estimators we study minimize the sum of squared data-fitting errors plus a regularization term proportional to the squared Euclidean norm of the ...