Pierre VandergheynstPierre Vandergheynst received the M.S. degree in physics and the Ph.D. degree in mathematical physics from the Université catholique de Louvain, Louvain-la-Neuve, Belgium, in 1995 and 1998, respectively. From 1998 to 2001, he was a Postdoctoral Researcher with the Signal Processing Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. He was Assistant Professor at EPFL (2002-2007), where he is now a Full Professor of Electrical Engineering and, by courtesy, of Computer and Communication Sciences. As of 2015, Prof. Vandergheynst serves as EPFL’s Vice-Provost for Education. His research focuses on harmonic analysis, sparse approximations and mathematical data processing in general with applications covering signal, image and high dimensional data processing, computer vision, machine learning, data science and graph-based data processing. He was co-Editor-in-Chief of Signal Processing (2002-2006), Associate Editor of the IEEE Transactions on Signal Processing (2007-2011), the flagship journal of the signal processing community and currently serves as Associate Editor of Computer Vision and Image Understanding and SIAM Imaging Sciences. He has been on the Technical Committee of various conferences, serves on the steering committee of the SPARS workshop and was co-General Chairman of the EUSIPCO 2008 conference. Pierre Vandergheynst is the author or co-author of more than 70 journal papers, one monograph and several book chapters. He has received two IEEE best paper awards. Professor Vandergheynst is a laureate of the Apple 2007 ARTS award and of the 2009-2010 De Boelpaepe prize of the Royal Academy of Sciences of Belgium.
Boi FaltingsProfessor Faltings joined EPFL in 1987 as professor of Artificial Intelligence. He holds a PhD degree from the University of Illinois at Urbana-Champaign, and a diploma from the ETHZ. His research has spanned different areas of intelligent systems linked to model-based reasoning. In particular, he has contributed to qualitative spatial reasoning, case-based reasoning (especially for design problems), constraint satisfaction for design and logistics problems, multi-agent systems, and intelligent user interfaces. His current work is oriented towards multi-agent systems and social computing, using concepts of game theory, constraint optimization and machine learning. In 1999, Professor Faltings co-founded Iconomic Systems, a company that developed a new agent-based paradigm for travel e-commerce. He has since co-founded 5 other startup companies and advised several others. Prof. Faltings has published more than 150 refereed papers on his work, and participates regularly in program committees of all major conferences in the field. He has served as associate editor of of the major journals, including the Journal of Artificial Intelligence Research (JAIR) and the Artificial Intelligence Journal. From 1996 to 1998, he served as head of the computer science department.
Mengjie ZhaoMengjie Zhao holds degrees in Computational Mechanics (MSc) with honors track and in Engineering Science (BSc) from the Technical University of Munich (TUM).
From the early years of her studies, Mengjie was fascinated by the modeling of multiphysics and multiscale systems. As a student research assistant at TUM and research intern at International Centre for Numerical Methods in Engineering (CIMNE), she gained a solid understanding of both the theoretical and algorithmic fundamentals as well as a wide range of applications. Through the BGCE project with the Elitenetzwerk Bayern (ENB), which dealt with the mesh sensitivity prediction with a deep neural network, she realized that leveraging data could bring physical modeling far beyond the current computational limits. Later, in her master's thesis in cooperation with Siemens, she turned to the reduced-order modeling with enforced physical invariants, which showed better accuracy and generality.
In her Ph.D., she would like to step towards a further combination of deductive research (modeling and simulation) and inductive (data-driven) research by embedding physics into machine learning.