Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique that directly detects superparamagnetic nanoparticle tracers. The technology has potential applications in diagnostic imaging and material science. Currently, it is used in medical research to measure the 3-D location and concentration of nanoparticles. Imaging does not use ionizing radiation and can produce a signal at any depth within the body. MPI was first conceived in 2001 by scientists working at the Royal Philips Research lab in Hamburg. The first system was established and reported in 2005. Since then, the technology has been advanced by academic researchers at several universities around the world. The first commercial MPI scanners have recently become available from Magnetic Insight and Bruker Biospin.
The hardware used for MPI is very different from MRI. MPI systems use changing magnetic fields to generate a signal from superparamagnetic iron oxide (SPIO) nanoparticles. These fields are specifically designed to produce a single magnetic field free region. A signal is only generated in this region. An image is generated by moving this region across a sample. Since there is no natural SPIO in tissue, a signal is only detected from the administered tracer. This provides images without background. MPI is often used in combination with anatomical imaging techniques (such as CT or MRI) providing information on the location of the tracer.
Magnetic particle imaging combines high tracer sensitivity with submillimeter . Imaging is performed in a range of milliseconds to seconds. The iron oxide tracer used with MPI are cleared naturally by the body through the mononuclear phagocyte system. The iron oxide nanoparticles are broken down in the liver, where the iron is stored and used to produce hemoglobin. SPIOs have previously been used in humans for iron supplementation and liver imaging.
The first in vivo MPI results provided images of a beating mouse heart in 2009. With further research, this could eventually be used for real-time cardiac imaging.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction to 0ptical imaging systems such as camera objectives and microscopes. Discussion of imaging formation. Principles of design of imaging optics with geometrical optics and analysis with ray
This course gives an introduction to principles of Fourier and physical optics, optical response functions, and sampling. On the second half the course covers topics of advanced imaging, including 3 -
This course will present the fundamentals of electronâmatter interactions, as occuring in the energy range available in modern transmission electron microscopes, namely 60-300 keV electrons. Diffrac
L'imagerie médicale regroupe les moyens d'acquisition et de restitution d'images du corps humain à partir de différents phénomènes physiques tels que l'absorption des rayons X, la résonance magnétique nucléaire, la réflexion d'ondes ultrasons ou la radioactivité auxquels on associe parfois les techniques d'imagerie optique comme l'endoscopie. Apparues, pour les plus anciennes, au tournant du , ces techniques ont révolutionné la médecine grâce au progrès de l'informatique en permettant de visualiser indirectement l'anatomie, la physiologie ou le métabolisme du corps humain.
Optical microscopy is an essential tool for biologists, who are often faced with the need to overcome the spatial and temporal resolution limitations of their devices to capture finer details. As upgrading imaging hardware is expensive, computational metho ...
EPFL2023
, ,
Assessing the individual risk of Major Adverse Cardiac Events (MACE) is of major importance as cardiovascular diseases remain the leading cause of death worldwide. Quantitative Myocardial Perfusion Imaging (MPI) parameters such as stress Myocardial Blood F ...
Background: The pathophysiology behind tinnitus is still not well understood. Different imaging methods help in the understanding of the complex relationships that lead to the perception of tinnitus.Objective: Herein, different functional imaging methods t ...