Concept

Magnetic particle imaging

Summary
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique that directly detects superparamagnetic nanoparticle tracers. The technology has potential applications in diagnostic imaging and material science. Currently, it is used in medical research to measure the 3-D location and concentration of nanoparticles. Imaging does not use ionizing radiation and can produce a signal at any depth within the body. MPI was first conceived in 2001 by scientists working at the Royal Philips Research lab in Hamburg. The first system was established and reported in 2005. Since then, the technology has been advanced by academic researchers at several universities around the world. The first commercial MPI scanners have recently become available from Magnetic Insight and Bruker Biospin. The hardware used for MPI is very different from MRI. MPI systems use changing magnetic fields to generate a signal from superparamagnetic iron oxide (SPIO) nanoparticles. These fields are specifically designed to produce a single magnetic field free region. A signal is only generated in this region. An image is generated by moving this region across a sample. Since there is no natural SPIO in tissue, a signal is only detected from the administered tracer. This provides images without background. MPI is often used in combination with anatomical imaging techniques (such as CT or MRI) providing information on the location of the tracer. Magnetic particle imaging combines high tracer sensitivity with submillimeter . Imaging is performed in a range of milliseconds to seconds. The iron oxide tracer used with MPI are cleared naturally by the body through the mononuclear phagocyte system. The iron oxide nanoparticles are broken down in the liver, where the iron is stored and used to produce hemoglobin. SPIOs have previously been used in humans for iron supplementation and liver imaging. The first in vivo MPI results provided images of a beating mouse heart in 2009. With further research, this could eventually be used for real-time cardiac imaging.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)

Separation and Focusing of Magnetic Beads for Agglutination Tests

Rana Afshar Ghasemlouy

Functional magnetic micro- and nanoparticles are used in bioanalytical applications as solid carriers for capture, transport and detection of biomolecules or magnetically labeled cells. Colloidal suspensions of such particles provide a large specific surface for chemical binding and therefore allow highly efficient interactions with target molecules in a sample solution. Controlled actuation and manipulation of these mobile substrates in the microfluidic format offers interesting new opportunities for on-chip bioassays with previously unmatched properties. Separation of functional magnetic particles or magnetically labeled entities is therefore a key feature for bioanalytical or biomedical applications and also an important component of lab-on-a-chip devices for biological applications. In this thesis we present two novel integrated microfluidic magnetic bead manipulation devices. The first system consists of dosing of magnetic particles, controlled release and subsequent magnetophoretic size separation with high resolution. On-chip integrated soft-magnetic microtips with different shapes provide the magnetic driving force for the bead manipulation. The system is designed to meet the requirements of specific bioassays, in particular of on-chip agglutination assays for the detection of rare analytes, in which the latter can be quantified via the counting of the particle doublets. In a second approach, magneto-microfluidic three-dimensional (3D) focusing of microparticles has been developed. In this system, magnetic microparticles from a dense plug are released into a single streamline with longitudinal inter-particle spacing. Plug formation is induced by a high-gradient magnetic field generated at the sidewall of a microchannel by a micromachined magnetic tip that is connected to an electromagnet. Controlled release of the microparticles is achieved using an exponential damping protocol of the magnetic retention force in the presence of an applied flow. Carefully balancing the relative strengths of the drag force imposed by the flow and the magnetic retention force moreover allows in-flow size separation of the microparticles. Adding subsequently a lateral sheath flow microchannel focuses the microparticles into a single stream situated within 0plusmn; 5 µm from the channel center axis. Our system for 3D focusing and in-flow separation of magnetic microparticles has been used for performing an immuno-agglutination assay on-chip. 3D focusing was of the basis of reliable in-flow counting of singlets and agglutinated doublets. We demonstrated the potential of the agglutination assay in a microfluidic format using a streptavidin/biotinylated-bovine serum albumin (bBSA) model system. A bBSA detection limit of about 400 pg/mL (6 pM) is achieved.
EPFL2011
Related people (2)
Related concepts (3)
Magnetic particle imaging
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique that directly detects superparamagnetic nanoparticle tracers. The technology has potential applications in diagnostic imaging and material science. Currently, it is used in medical research to measure the 3-D location and concentration of nanoparticles. Imaging does not use ionizing radiation and can produce a signal at any depth within the body. MPI was first conceived in 2001 by scientists working at the Royal Philips Research lab in Hamburg.
Medical imaging
Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities.
CT scan
A computed tomography scan (usually abbreviated to CT scan; formerly called computed axial tomography scan or CAT scan) is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or radiology technologists. CT scanners use a rotating X-ray tube and a row of detectors placed in a gantry to measure X-ray attenuations by different tissues inside the body.
Related courses (3)
MICRO-421: Imaging optics
Introduction to 0ptical imaging systems such as camera objectives and microscopes. Discussion of imaging formation. Principles of design of imaging optics with geometrical optics and analysis with ray
PHYS-715: Physical Optics and Advanced Imaging
This course gives an introduction to principles of Fourier and physical optics, optical response functions, and sampling. On the second half the course covers topics of advanced imaging, including 3 -
PHYS-637: Electron Matter Interactions in Transmission Electron Microscopy
This course will present the fundamentals of electron–matter interactions, as occuring in the energy range available in modern transmission electron microscopes, namely 60-300 keV electrons. Diffrac
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.