Résumé
In computing, binary translation is a form of binary recompilation where sequences of instructions are translated from a source instruction set to the target instruction set. In some cases such as instruction set simulation, the target instruction set may be the same as the source instruction set, providing testing and debugging features such as instruction trace, conditional breakpoints and hot spot detection. The two main types are static and dynamic binary translation. Translation can be done in hardware (for example, by circuits in a CPU) or in software (e.g. run-time engines, static recompiler, emulators). Binary translation is motivated by a lack of a binary for a target platform, the lack of source code to compile for the target platform, or otherwise difficulty in compiling the source for the target platform. Statically-recompiled binaries run potentially faster than their respective emulated binaries, as the emulation overhead is removed. This is similar to the difference in performance between interpreted and compiled programs in general. A translator using static binary translation aims to convert all of the code of an executable file into code that runs on the target architecture without having to run the code first, as is done in dynamic binary translation. This is very difficult to do correctly, since not all the code can be discovered by the translator. For example, some parts of the executable may be reachable only through indirect branches, whose value is known only at run-time. One such static binary translator uses universal superoptimizer peephole technology (developed by Sorav Bansal and Alex Aiken from Stanford University) to perform efficient translation between possibly many source and target pairs, with considerably low development costs and high performance of the target binary. In experiments of PowerPC-to-x86 translations, some binaries even outperformed native versions, but on average they ran at two-thirds of native speed.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.