Standard part functionIn nonstandard analysis, the standard part function is a function from the limited (finite) hyperreal numbers to the real numbers. Briefly, the standard part function "rounds off" a finite hyperreal to the nearest real. It associates to every such hyperreal , the unique real infinitely close to it, i.e. is infinitesimal. As such, it is a mathematical implementation of the historical concept of adequality introduced by Pierre de Fermat, as well as Leibniz's Transcendental law of homogeneity.
Nonstandard calculusIn mathematics, nonstandard calculus is the modern application of infinitesimals, in the sense of nonstandard analysis, to infinitesimal calculus. It provides a rigorous justification for some arguments in calculus that were previously considered merely heuristic. Non-rigorous calculations with infinitesimals were widely used before Karl Weierstrass sought to replace them with the (ε, δ)-definition of limit starting in the 1870s. (See history of calculus.
Analyse non standardEn mathématiques, et plus précisément en analyse, l'analyse non standard est un ensemble d'outils développés depuis 1960 afin de traiter la notion d'infiniment petit de manière rigoureuse. Pour cela, une nouvelle notion est introduite, celle d'objet standard (s'opposant à celle d'objet non standard), ou plus généralement de modèle standard ou de modèle non standard. Cela permet de présenter les principaux résultats de l'analyse sous une forme plus intuitive que celle exposée traditionnellement depuis le .
Nombre hyperréelvignette|Représentation des infinitésimaux (ε) et infinis (ω) sur la droite des nombres hyperréels (1/ε = ω)|520x520px En mathématiques, le corps ordonné des nombres hyperréels constitue une extension, notée *R, des nombres réels usuels, permettant de donner un sens rigoureux aux notions de quantité infiniment petite ou infiniment grande. On peut éviter alors l'emploi des passages à la limite et des expressions conditionnées par une valeur ε « aussi petite que l’on veut ».