Concept

Size theory

In mathematics, size theory studies the properties of topological spaces endowed with -valued functions, with respect to the change of these functions. More formally, the subject of size theory is the study of the natural pseudodistance between size pairs. A survey of size theory can be found in The beginning of size theory is rooted in the concept of size function, introduced by Frosini. Size functions have been initially used as a mathematical tool for shape comparison in computer vision and pattern recognition. An extension of the concept of size function to algebraic topology was made in the 1999 Frosini and Mulazzani paper where size homotopy groups were introduced, together with the natural pseudodistance for -valued functions. An extension to homology theory (the size functor) was introduced in 2001. The size homotopy group and the size functor are strictly related to the concept of persistent homology group studied in persistent homology. It is worth to point out that the size function is the rank of the -th persistent homology group, while the relation between the persistent homology group and the size homotopy group is analogous to the one existing between homology groups and homotopy groups. In size theory, size functions and size homotopy groups are seen as tools to compute lower bounds for the natural pseudodistance. Actually, the following link exists between the values taken by the size functions , and the natural pseudodistance between the size pairs An analogous result holds for size homotopy group. The attempt to generalize size theory and the concept of natural pseudodistance to norms that are different from the supremum norm has led to the study of other reparametrization invariant norms.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.