**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Concept# Fission nucléaire

Résumé

redresse=1.67|vignette|Schéma animé (simplifié) d'une fission nucléaire. Un atome (énorme rond rouge) est percuté par un neutron (point bleu). Celui-ci se scinde en deux atomes. La réaction émet d'autres neutrons.
La fission nucléaire est le phénomène par lequel un noyau atomique lourd (c'est-à-dire formé d'un grand nombre de nucléons – comme l'uranium, le plutonium) est scindé en deux ou en quelques nucléides plus légers. Cette réaction nucléaire s'accompagne de l'émission de neutrons (en général deux ou trois) et d'un dégagement d'énergie très important (≈ par atome fissionné, donc beaucoup plus que celui des réactions chimiques, de l'ordre de l'eV par atome ou molécule réagissant). L'émission de neutrons peut entraîner une réaction en chaîne, phénomène mis en œuvre dans les centrales nucléaires pour la production d'électricité et dans les bombes atomiques.
Découverte
Découverte de la fission nucléaire
Le phénomène de fission nucléaire induite est décrit le par deux c

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

Personnes associées (8)

Publications associées (100)

Chargement

Chargement

Chargement

Concepts associés (199)

Réacteur nucléaire

Un réacteur nucléaire est un ensemble de dispositifs comprenant du combustible nucléaire, qui constitue le « cœur » du réacteur, dans lequel une réaction en chaîne peut être initiée et contrôlée par

Neutron

Le neutron est une particule subatomique de charge électrique nulle.
Les neutrons sont présents dans le noyau des atomes, liés avec des protons par l'interaction forte. Alors que le nombre de proto

Uranium

L’uranium est l'élément chimique de numéro atomique 92, de symbole U. Il fait partie de la famille des actinides.
L'uranium est le naturel le plus abondant dans la croûte terrestre, son abondance

Unités associées (9)

Cours associés (37)

PHYS-443: Physics of nuclear reactors

In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain reaction.

ME-464: Introduction to nuclear engineering

This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Reactor designs, Thermal analysis of nuclear fuel, Nuclear safety and Reactor dynamics

PHYS-114: General physics: electromagnetism

The course first develops the basic laws of electricity and magnetism and illustrates the use in understanding various electromagnetic phenomena.

Séances de cours associées (81)

The Supercritical-Water-Cooled Reactor (SCWR) is the Generation IV reactor concept most closely related to current light water reactors (LWRs). The SCWR builds on the vast experience with today's LWRs and supercritical coal-fired power plants. Water at supercritical state is used as moderator and coolant, and reaches a temperature of about 500 °C at the core outlet, which enables a much higher thermal efficiency (∼ 44%) than possible with current-day LWRs. In the operating range of an SCWR, the supercrical water density can become as low as one seventh of the density of water at room temperature. In order to ensure a thermal neutron spectrum, large moderator regions are introduced into the fuel assembly designs, resulting in lattices with strong moderation heterogeneity. As such, the neutronics of these assemblies differs significantly from that of standard LWRs, and lies outside the validated domain of reactor physics codes. Previous comparisons between the deterministic code CASMO-4 and reference calculations carried out with the Monte Carlo code MCNP4C showed large differences in calculated pin-wise reaction rate distributions in perturbed SCWR lattices. The experimental validation of standard reactor physics codes for SCWR-representative neutronics conditions is thus clearly of key importance for the further development of this technology. The goal of this thesis is to provide an experimental database for such validation and to assess the level of performance of current-day codes for SCWR analysis. An SCWR-like fuel lattice, based on a Japanese assembly design proposal from 2001, has been investigated in the PROTEUS zero-power research reactor at the Paul Scherrer Institute. Measurements have been carried out on the unperturbed test lattice, as also on six other PROTEUS configurations corresponding to different types of perturbations of the reference lattice. The investigated perturbations include control rod related effects, moderator density changes, and the replacement of a fuel pin with gadolinium-poisoned fuel. For each experimental configuration, pin-wise distributions of the total fission rate (Ftot) and the 238U capture rate (C8), as well as of their ratio (C8/Ftot), have been obtained across the assembly and compared to computed values. The neutronics codes used for the calculations are the LWR assembly code CASMO-4E and the Monte Carlo code MCNPX. Additionally, the reactivity effects of removing individual pins from the unperturbed SCWR-like lattice have been measured and compared to predictions obtained using the two codes. The pin-wise reaction rate distributions predicted with MCNPX have been found to agree within two standard deviations with the measured values for the unperturbed, as well as all the perturbed, configurations. The 1σ uncertainty was in the order of 0.4%, 0.8%, and 2.2% for Ftot, C8, and C8/Ftot, respectively. MCNPX could thus be validated for the various SCWR-like conditions investigated and has, in turn, been used to validate CASMO-4E on simplified geometries. For the latter purpose, the unperturbed and perturbed SCWR-like lattices were modeled as reflected assemblies, and reaction rate distributions predicted with the two codes were compared. For the unperturbed lattice and for the configurations with local perturbations of the neutron absorption, the agreement between the codes was within ∼ 1% for all reaction rates. However, for lattices with locally perturbed moderation conditions, CASMO-4E was initially found to overestimate the reaction rates in the vicinity of the perturbations by up to 5%. The discrepancies were identified as resulting from the default leakage treatment in CASMO-4E, which applies a DB2 correction in a homogenized sense across the lattice. In this way, cases with a global leakage gradient were not being treated properly. Usage of the optional input card BZ2, which allows a region-wise leakage treatment, resolved this problem, and the codes then agreed mostly within 1% for all the configurations. The pin removal worth measurements in the unperturbed SCWR-like lattice have provided integral data complementary to the reaction rate distributions. MCNPX results were found to agree with experiment within the statistical uncertainty of typically ∼ 10% (1σ). The comparison of reflected-assembly results from MCNPX and CASMO-4E yielded significant differences in the calculated pin removal worths (up to 4.3σ). A decomposition analysis of these differences has indicated that the discrepancies, especially for the better moderated pin positions, are linked to the calculation of the additional moderator effect caused by the pin removal. Finally, the transferability of the code validation, carried out under the PROTEUS experimental conditions, to the most recently proposed SCWR assembly designs has been assessed. Since, under power-reactor conditions, the moderator and coolant water densities are considerably lower in the proposed SCWR assemblies than that in the PROTEUS test lattices, their neutron spectra are much harder. Assembly-averaged values of the integral parameters C8/Ftot and F8/Ftot have been found to be as much as 65% and 80% higher, respectively, than for the PROTEUS reference lattice. However, the agreement between CASMO-4E and MCNPX predictions for the proposed SCWR assembly designs is still very good, indicating that the accuracy of the deterministic calculations does not deteriorate markedly when considering these new designs under power-reactor conditions.

With preparation of Hi-Lumi LHC fully underway, and the FCC machines under study, accelerators will reach unprecedented energies and along with it very large amount of synchrotron radiation (SR). This will desorb photoelectrons and molecules from accelerator walls, which contribute to electron cloud buildup and increase the residual pressure - both effects reducing the beam lifetime. In current accelerators these two effects are among the principal limiting factors, therefore precise calculation of synchrotron radiation and pressure properties are very important, desirably in the early design phase. This PhD project shows the modernization and a major upgrade of two codes, Molflow and Synrad, originally written by R. Kersevan in the 1990s, which are based on the test-particle Monte Carlo method and allow ultra-high vacuum and synchrotron radiation calculations. The new versions contain new physics, and are built as an all-in-one package - available to the public. Existing vacuum calculation methods are overviewed, then the steady-state and time-dependent algorithms behind the ultra-high vacuum simulator Molflow are presented. Some practices to tackle the most common problems that arise when simulating large systems are also discussed. Results are compared to theory, and validated through two experiments. Next the the main steps of synchrotron radiation simulations are presented. Properties of SR are summarized, along with optimizations that allow simulating the rather complex underlying physics at a higher speed. The resulting software's photon generation algorithm is benchmarked against published data. The phenomenon of photon stimulated desorption and its literature is overviewed, then two dedicated photodesorption experiments carried out in KEK (Tsukuba, Japan) are presented: one with six room-temperature samples and an other at liquid nitrogen temperature. A simple synchrotron radiation calculation is performed for the LHeC interaction region, allowing to compare Synrad+ results with published analytic calculations. Then the calculations are repeated for a more precise geometry description. The pressure profile of a crotch absorber of the recently started Max IV light source is calculated using Molflow+ and Synrad+ together. Finally the pressure analysis of the SuperKEKB interaction region is presented, consisting of modeling the vacuum chamber and the optics, calculating synchrotron radiation, then performing vacuum simulations. It is confirmed that pressure is expected to meet the design requirements during operation of the machine.

Magnetism is largely responsible for the body centered cubic to face centered cubic structural phase transition occurring in iron at 1185 K and to many anomalies in the vicinity of the ferromagnetic to paramagnetic phase transition at 1043 K, as for instance an anomalous softening of the tetrahedral shear modulus. Current atomistic models including magnetism are either limited to the treatment of perfect lattice models or to zero temperatures, while research and development of candidate materials for future fission and fusion power plants requires the modeling of irradiation induced defects in ferritic/martensitic steels at high temperatures. An attempt to fill this gap is the Dudarev-Derlet potential, which includes zero temperature magnetism in an embedded atom method formalism, together with a more recent extension of the method to the inclusion of spin rotations at non zero temperature with nearly half the computational speed of an embedded atom method potential. In this work, we report on the optimization of the Dudarev-Derlet potential to the zero temperature bulk properties of the non-magnetic and ferromagnetic bcc and fcc phases, including the third order elastic constants of the ferromagnetic bcc phase, the point defects formation and migration energies and the core structure of the screw dislocation with Burgers vector 1/2[111], either from experiments or from density functional theory calculations, where we develop a method to fit the core structure of the screw dislocation based on the Suzuki-Takeuchi model. Three representative fits from the optimization of the Dudarev-Derlet potential are compared with recent semi empirical potentials for iron, with density functional theory and experiments. The migration energies of the self-interstitial range from 0.31 eV to 0.42 eV, compared to a density functional theory value close to 0.35 eV and an experimental value close to 0.3 eV, and the vacancy migration energies range from 0.85 eV to 0.94 eV, compared to a density functional theory value close to 0.65 eV. Clusters composed of parallel self-interstitials are oriented along ‹110› if the number of interstitials composing the cluster is smaller or equal than 3, while for bigger clusters the ‹111› orientation is more stable, in qualitative agreement with density functional theory. Depending on which one of the three representative fits is chosen, the formation entropy of one ‹110› dumbbell calculated by the thermodynamical integration method in the range from 300 K to 600 K varies from 0.28 kB to 4.02 kB. The diffusion coefficient of the ‹110› dumbbell at 600 K ranges from 1×10-6 cm2/s to 10×10-6 cm2/s, while at room temperatures the scatters extends over three orders of magnitude. The main difficulties, common to all the semi empirical potentials considered in the work, are related to the description of the fcc phase and the migration mechanism of the screw dislocation. The semi empirical potentials are unable to distinguish the anti-ferromagnetic fcc from the low spin ferromagnetic fcc or the high spin ferromagnetic fcc. Considering the equilibrium volume and the bulk magnetic moment, the high spin phase is the one which most resembles the ferromagnetic fcc phase of the Dudarev-Derlet potentials. Finally, for those fits with a non-degenerate core structure, we investigate some fundamental aspects of the migration mechanism of the screw dislocation with Burgers vector 1/2[111] at zero temperature and at zero applied stress, by calculating the Peierls potential in the [211] direction between two structurally equivalent soft cores. This confirms the existence of a stable core structure in the middle of the migration path not observed in density functional theory, which is actually found to be energetically degenerate with the soft core. The consequences of this are discussed in terms of formation energies of double kinks in the [211] direction.