Résumé
Strong cryptography or cryptographically strong are general terms used to designate the cryptographic algorithms that, when used correctly, provide a very high (usually unsurmountable) level of protection against any eavesdropper, including the government agencies. There is no precise definition of the boundary line between the strong cryptography and (breakable) weak cryptography, as this border constantly shifts due to improvements in hardware and cryptanalysis techniques. These improvements eventually place the capabilities once available only to the NSA within the reach of a skilled individual, so in practice there are only two levels of cryptographic security, "cryptography that will stop your kid sister from reading your files, and cryptography that will stop major governments from reading your files" (Bruce Schneier). The strong cryptography algorithms have high security strength, for practical purposes usually defined as a number of bits in the key. For example, the United States government, when dealing with export control of encryption, considers any implementation of the symmetric encryption algorithm with the key length above 56 bits or its public key equivalent to be strong and thus potentially a subject to the export licensing. To be strong, an algorithm needs to have a sufficiently long key and be free of known mathematical weaknesses, as exploitation of these effectively reduces the key size. At the beginning of the 21st century, the typical security strength of the strong symmetrical encryption algorithms is 128 bits (slightly lower values still can be strong, but usually there is little technical gain in using smaller key sizes). Demonstrating the resistance of any cryptographic scheme to attack is a complex matter, requiring extensive testing and reviews, preferably in a public forum. Good algorithms and protocols are required, and good system design and implementation is needed as well. For instance, the operating system on which the cryptographic software runs should be as carefully secured as possible.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (60)

Security in the Presence of Quantum Adversaries

Khashayar Barooti

With the looming threat of large-scale quantum computers, a fair portion of recent cryptographic research has focused on examining cryptographic primitives from the perspective of a quantum adversary. Shor's 1994 result revealed that quantum computers can ...
EPFL2023
Afficher plus
Concepts associés (1)
Cryptographie
thumb|La machine de Lorenz utilisée par les nazis durant la Seconde Guerre mondiale pour chiffrer les communications militaires de haut niveau entre Berlin et les quartiers-généraux des différentes armées. La cryptographie est une des disciplines de la cryptologie s'attachant à protéger des messages (assurant confidentialité, authenticité et intégrité) en s'aidant souvent de secrets ou clés. Elle se distingue de la stéganographie qui fait passer inaperçu un message dans un autre message alors que la cryptographie rend un message supposément inintelligible à autre que qui de droit.