Résumé
The diffusion of plasma across a magnetic field was conjectured to follow the Bohm diffusion scaling as indicated from the early plasma experiments of very lossy machines. This predicted that the rate of diffusion was linear with temperature and inversely linear with the strength of the confining magnetic field. The rate predicted by Bohm diffusion is much higher than the rate predicted by classical diffusion, which develops from a random walk within the plasma. The classical model scaled inversely with the square of the magnetic field. If the classical model is correct, small increases in the field lead to much longer confinement times. If the Bohm model is correct, magnetically confined fusion would not be practical. Early fusion energy machines appeared to behave according to Bohm's model, and by the 1960s there was a significant stagnation within the field. The introduction of the tokamak in 1968 was the first evidence that the Bohm model did not hold for all machines. Bohm predicts rates that are too fast for these machines, and classical too slow; studying these machines has led to the neoclassical diffusion concept. Bohm diffusion is characterized by a diffusion coefficient equal to where B is the magnetic field strength, T is the electron gas temperature, e is the elementary charge, kB is the Boltzmann constant. It was first observed in 1949 by David Bohm, E. H. S. Burhop, and Harrie Massey while studying magnetic arcs for use in isotope separation. It has since been observed that many other plasmas follow this law. Fortunately there are exceptions where the diffusion rate is lower, otherwise there would be no hope of achieving practical fusion energy. In Bohm's original work he notes that the fraction 1/16 is not exact; in particular "the exact value of [the diffusion coefficient] is uncertain within a factor of 2 or 3." Lyman Spitzer considered this fraction as a factor related to plasma instability. Generally diffusion can be modeled as a random walk of steps of length and time .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.