Explore les modèles génératifs, la régression logistique et la distribution gaussienne pour approximer les probabilités postérieures et optimiser les performances du modèle.
Se penche sur l'analyse de la consommation d'oxygène, couvrant la régression, l'interprétation des erreurs et l'application du modèle Michaelis-Menten.
Couvre l'analyse de régression pour les données de désassemblage à l'aide de la modélisation de régression linéaire, des transformations, des interprétations des coefficients et des modèles linéaires généralisés.
Couvre l'optimisation dans l'apprentissage automatique, en mettant l'accent sur la descente par gradient pour la régression linéaire et logistique, la descente par gradient stochastique et des considérations pratiques.
Introduit une régression linéaire et logistique, couvrant les modèles paramétriques, la prédiction multi-sorties, la non-linéarité, la descente de gradient et les applications de classification.
Couvre la méthode ANOVA, en se concentrant sur la partition de la somme totale des carrés en composantes de traitement et d'erreur, les calculs carrés moyens, les statistiques de Fisher et la distribution F.
Couvre la théorie et les applications des modèles linéaires généralisés, y compris le MLE, les mesures d'ajustement, le rétrécissement et des exemples spéciaux.