Uncertain geographic context problemThe uncertain geographic context problem (UGCoP) is a source of statistical bias that can significantly impact the results of spatial analysis when dealing with aggregate data. The UGCoP is very closely related to the Modifiable areal unit problem (MAUP), and like the MAUP, arises from how we divide the land into areal units. It is caused by the difficulty, or impossibility, of understanding how phenomena under investigation (such as people within a census tract) in different enumeration units interact between enumeration units, and outside of a study area over time.
Boundary problem (spatial analysis)A boundary problem in analysis is a phenomenon in which geographical patterns are differentiated by the shape and arrangement of boundaries that are drawn for administrative or measurement purposes. The boundary problem occurs because of the loss of neighbors in analyses that depend on the values of the neighbors. While geographic phenomena are measured and analyzed within a specific unit, identical spatial data can appear either dispersed or clustered depending on the boundary placed around the data.
Quantitative geographyQuantitative geography is a subfield and methodological approach to geography that develops, tests, and uses mathematical and statistical methods to analyze and model geographic phenomena and patterns. It aims to explain and predict the distribution and dynamics of human and physical geography through the collection and analysis of quantifiable data. The approach quantitative geographers take is generally in line with the scientific method, where a falsifiable hypothesis is generated, and then tested through observational studies.
Distance decayDistance decay is a geographical term which describes the effect of distance on cultural or spatial interactions. The distance decay effect states that the interaction between two locales declines as the distance between them increases. Once the distance is outside of the two locales' activity space, their interactions begin to decrease. It is thus an assertion that the mathematics of the inverse square law in physics can be applied to many geographic phenomena, and is one of the ways in which physics principles such as gravity are often applied metaphorically to geographic situations.