Résumé
Oliver Heaviside, né le à Camden Town et mort le à Torquay, est un physicien et mathématicien britannique autodidacte. Malgré ses difficultés avec la communauté scientifique, il a beaucoup apporté aux domaines des mathématiques, de la physique et des communications télégraphiques. Heaviside est principalement connu pour avoir reformulé et simplifié les équations de Maxwell sous leur forme actuelle utilisée en calcul vectoriel. Il a également établi l'équation des télégraphistes et développé une méthode de résolution des équations différentielles équivalente à l'emploi de la transformation de Laplace. Enfin, on lui doit l'usage des nombres complexes pour l'étude des circuits électriques. Heaviside est né au 55 Kings Street(actuel Plender Street) à Camden Town à Londres. Enfant chétif et roux, il souffre de la scarlatine et son audition en est affectée. Un modeste héritage permet à sa famille de déménager dans un quartier plus agréable de Camden lorsqu'il a treize ans, où il est scolarisé à la Camden House Grammar School. Il est bon élève, et en sort cinquième sur cinq-cents étudiants en 1865. Cependant, ses parents ne pouvant pas poursuivre sa scolarisation après l'âge de 16 ans, il quitte définitivement l'école et continue son éducation en autodidacte pendant un an. Son oncle par alliance, Sir C. Wheatstone (1802-1875), qui est un expert renommé des télégraphes et de l'électromagnétisme, et qui co-invente dans les années 1830 le premier télégraphe commercialisable, se penche sur l'éducation de son neveu avec attention. Il l'envoie à Newcastle upon Tyne pour travailler dans l'une de ses entreprises de télégraphe, sous la direction du frère aîné de Charles, Arthur. Deux ans plus tard, Heaviside commence à travailler en tant qu'opérateur de télégraphe pour le compte de la Great Northern Telegraph Company qui établissait alors une liaison entre Newcastle et le Danemark. Il devient alors électricien et continue d'étudier en autodidacte, si bien qu'à 22 ans, il publie un article dans le Philosophical Magazine sur l'utilisation optimale d'un pont de Wheatstone.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.