Crystal structure prediction (CSP) is the calculation of the crystal structures of solids from first principles. Reliable methods of predicting the crystal structure of a compound, based only on its composition, has been a goal of the physical sciences since the 1950s. Computational methods employed include simulated annealing, evolutionary algorithms, distributed multipole analysis, random sampling, basin-hopping, data mining, density functional theory and molecular mechanics. The crystal structures of simple ionic solids have long been rationalised in terms of Pauling's rules, first set out in 1929 by Linus Pauling. For metals and semiconductors one has different rules involving valence electron concentration. However, prediction and rationalization are rather different things. Most commonly, the term crystal structure prediction means a search for the minimum-energy arrangement of its constituent atoms (or, for molecular crystals, of its molecules) in space. The problem has two facets: combinatorics (the "search phase space", in practice most acute for inorganic crystals), and energetics (or "stability ranking", most acute for molecular organic crystals). For complex non-molecular crystals (where the "search problem" is most acute), major recent advances have been the development of the Martonak version of metadynamics, the Oganov-Glass evolutionary algorithm USPEX, and first principles random search. The latter are capable of solving the global optimization problem with up to around a hundred degrees of freedom, while the approach of metadynamics is to reduce all structural variables to a handful of "slow" collective variables (which often works). Predicting organic crystal structures is important in academic and industrial science, particularly for pharmaceuticals and pigments, where understanding polymorphism is beneficial. The crystal structures of molecular substances, particularly organic compounds, are very hard to predict and rank in order of stability. Intermolecular interactions are relatively weak and non-directional and long range.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.