Concept

Generalized trigonometry

Ordinary trigonometry studies triangles in the Euclidean plane \mathbb{R}^2. There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions, definitions via differential equations, and definitions using functional equations. Generalizations of trigonometric functions are often developed by starting with one of the above methods and adapting it to a situation other than the real numbers of Euclidean geometry. Generally, trigonometry can be the study of triples of points in any kind of geometry or space. A triangle is the polygon with the smallest number of vertices, so one direction to generalize is to study higher-dimensional analogs of angles and polygons: solid angles and polytopes such as tetrahedrons and n-simplices. In spherical trigonometry, triangles on the surface of a sphere are studied. The spherical triangle identities are written in terms of the ordinary trigonometric functions but differ from the plane triangle identities. Hyperbolic trigonometry: Study of hyperbolic triangles in hyperbolic geometry with hyperbolic functions. Hyperbolic functions in Euclidean geometry: The unit circle is parameterized by (cos t, sin t) whereas the equilateral hyperbola is parameterized by (cosh t, sinh t). Gyrotrigonometry: A form of trigonometry used in the gyrovector space approach to hyperbolic geometry, with applications to special relativity and quantum computation. Trigonometry for taxicab geometry Spacetime trigonometries Fuzzy qualitative trigonometry Operator trigonometry Lattice trigonometry Trigonometry on symmetric spaces Schläfli orthoschemes - right simplexes (right triangles generalized to n dimensions) - studied by Schoute who called the generalized trigonometry of n Euclidean dimensions polygonometry. Pythagorean theorems for n-simplices with an "orthogonal corner" Trigonometry of a tetrahedron De Gua's theorem – a Pythagorean theorem for a tetrahedron with a cube corner A law of sines for tetrahedra Polar sine Trigonometric functions can be defined for fractional differential equations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.