Ordinary trigonometry studies triangles in the Euclidean plane \mathbb{R}^2. There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions, definitions via differential equations, and definitions using functional equations. Generalizations of trigonometric functions are often developed by starting with one of the above methods and adapting it to a situation other than the real numbers of Euclidean geometry. Generally, trigonometry can be the study of triples of points in any kind of geometry or space. A triangle is the polygon with the smallest number of vertices, so one direction to generalize is to study higher-dimensional analogs of angles and polygons: solid angles and polytopes such as tetrahedrons and n-simplices.
In spherical trigonometry, triangles on the surface of a sphere are studied. The spherical triangle identities are written in terms of the ordinary trigonometric functions but differ from the plane triangle identities.
Hyperbolic trigonometry:
Study of hyperbolic triangles in hyperbolic geometry with hyperbolic functions.
Hyperbolic functions in Euclidean geometry: The unit circle is parameterized by (cos t, sin t) whereas the equilateral hyperbola is parameterized by (cosh t, sinh t).
Gyrotrigonometry: A form of trigonometry used in the gyrovector space approach to hyperbolic geometry, with applications to special relativity and quantum computation.
Trigonometry for taxicab geometry
Spacetime trigonometries
Fuzzy qualitative trigonometry
Operator trigonometry
Lattice trigonometry
Trigonometry on symmetric spaces
Schläfli orthoschemes - right simplexes (right triangles generalized to n dimensions) - studied by Schoute who called the generalized trigonometry of n Euclidean dimensions polygonometry.
Pythagorean theorems for n-simplices with an "orthogonal corner"
Trigonometry of a tetrahedron
De Gua's theorem – a Pythagorean theorem for a tetrahedron with a cube corner
A law of sines for tetrahedra
Polar sine
Trigonometric functions can be defined for fractional differential equations.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
thumb|Cercle unité Le cercle unité est une expression courante pour désigner l'ensemble des nombres complexes de module 1. Si le module est vu comme une norme euclidienne, le cercle est une courbe de longueur 2π, et est le bord d'un disque d'aire π. Le cercle unité est l'image de l'axe des imaginaires purs iR par l'exponentielle complexe. Le cercle unité est stable par produit. C'est un sous-groupe du groupe des inversibles C* de C. Plus précisément, c'est son plus grand sous-groupe compact.