In mathematics, Suslin's problem is a question about totally ordered sets posed by and published posthumously.
It has been shown to be independent of the standard axiomatic system of set theory known as ZFC; showed that the statement can neither be proven nor disproven from those axioms, assuming ZF is consistent.
(Suslin is also sometimes written with the French transliteration as Souslin, from the Cyrillic Суслин.)
right
Suslin's problem asks: Given a non-empty totally ordered set R with the four properties
R does not have a least nor a greatest element;
the order on R is dense (between any two distinct elements there is another);
the order on R is complete, in the sense that every non-empty bounded subset has a supremum and an infimum; and
every collection of mutually disjoint non-empty open intervals in R is countable (this is the countable chain condition for the order topology of R),
is R necessarily order-isomorphic to the real line R?
If the requirement for the countable chain condition is replaced with the requirement that R contains a countable dense subset (i.e., R is a separable space), then the answer is indeed yes: any such set R is necessarily order-isomorphic to R (proved by Cantor).
The condition for a topological space that every collection of non-empty disjoint open sets is at most countable is called the Suslin property.
Any totally ordered set that is not isomorphic to R but satisfies properties 1–4 is known as a Suslin line. The Suslin hypothesis says that there are no Suslin lines: that every countable-chain-condition dense complete linear order without endpoints is isomorphic to the real line. An equivalent statement is that every tree of height ω1 either has a branch of length ω1 or an antichain of cardinality .
The generalized Suslin hypothesis says that for every infinite regular cardinal κ every tree of height κ either has a branch of length κ or an antichain of cardinality κ. The existence of Suslin lines is equivalent to the existence of Suslin trees and to Suslin algebras.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
thumb|Richard Dedekind (1831 - 1916) a défini rigoureusement les nombres réels et posé les bases de leur étude topologique. La topologie de la droite réelle (ou topologie usuelle de R) est une structure mathématique qui donne, pour l'ensemble des nombres réels, des définitions précises aux notions de limite et de continuité. Historiquement, ces notions se sont développées autour de la notion de nombre (approcher des nombres comme la racine carrée de deux ou pi par d'autres plus « maniables ») et de la géométrie de la droite (à laquelle l'espace topologique des nombres réels peut être assimilé), du plan et de l'espace usuels.
vignette|L'appartenance En mathématiques, la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une axiomatisation en logique du premier ordre de la théorie des ensembles telle qu'elle avait été développée dans le dernier quart du par Georg Cantor. L'axiomatisation a été élaborée au début du par plusieurs mathématiciens dont Ernst Zermelo et Abraham Fraenkel mais aussi Thoralf Skolem.
En mathématiques, et plus précisément en logique mathématique, le forcing est une technique inventée par Paul Cohen pour prouver des résultats de cohérence et d'indépendance en théorie des ensembles. Elle a été utilisée pour la première fois en 1962 pour prouver l'indépendance de l'hypothèse du continu vis-à-vis de la théorie ZFC. Combinée avec la technique des modèles de permutation de Fraenkel-Mostowski-Specker, elle a permis également d'établir l'indépendance de l'axiome du choix relativement à ZF.
Explore les méthodes numériques pour les problèmes de valeurs limites, y compris la diffusion de la chaleur et l'écoulement des fluides, en utilisant des méthodes à différences finies.
Explore la mécanique du continuum et l'hypothèse du continuum, soulignant l'importance d'ignorer la nature moléculaire à des échelles appropriées.
Explore l'importance des chiffres de premier plan et de l'équilibre dominant dans les approximations d'ingénierie, montrant les méthodes historiques comme les règles de diapositives et leur pertinence dans la résolution de problèmes difficiles.
Motivated by applications in software verification, we explore automated reasoning about the non-disjoint combination of theories of infinitely many finite structures, where the theories share set variables and set operations. We prove a combination theore ...