Two-state quantum systemIn quantum mechanics, a two-state system (also known as a two-level system) is a quantum system that can exist in any quantum superposition of two independent (physically distinguishable) quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit. Two-state systems are the simplest quantum systems that are of interest, since the dynamics of a one-state system is trivial (as there are no other states the system can exist in).
Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Particule matérielleLe terme « particule matérielle » (material particle en anglais) désigne une petite portion d'un corps, de matière solide ou fluide, constituée d'un nombre suffisamment grand de particules élémentaires. La matière est pleine de vide. Un corps de matière solide ou fluide est un domaine discontinu de particules composites (protons, neutrons), elles-mêmes composées de particules élémentaires. Les dimensions des particules élémentaires sont très petites devant les distances qui les séparent.
Effet StarkEn physique atomique, l'effet Stark (du nom de son découvreur Johannes Stark) est la modification des états électroniques sous l'action d'un champ électrique qui se traduit par l'éclatement et le décalage de raies spectrales en plusieurs composantes. La valeur énergétique de ce décalage s'appelle le décalage Stark (Stark shift). C'est un effet analogue à l'effet Zeeman (modification des états électroniques par application d'un champ magnétique). L'effet Stark est, entre autres, responsable de l'élargissement des raies spectrales par des particules chargées.
SpinLe 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
Interaction spin-orbitevignette|Structures fines et hyperfines dans l'hydrogène. Le couplage des différents moments cinétiques conduit à la division du niveau d'énergie. Non dessiné à l'échelle. Le moment cinétique de spin électronique, S est couplé au moment cinétique orbital électronique, L, pour former le moment angulaire électronique total , J. Celui-ci est ensuite couplé au moment cinétique de spin nucléaire, I, pour former le moment cinétique total, F. Le terme symbole prend la forme 2S+1L avec les valeurs de L représentées par des lettres (S,P,D ,F ,G,H,.
Théorie des perturbationsLa théorie des perturbations est un domaine des mathématiques, qui consiste à étudier les contextes où il est possible de trouver une solution approchée à une équation en partant de la solution d'un problème plus simple. Plus précisément, on cherche une solution approchée à une équation (E) (dépendante d'un paramètre λ), sachant que la solution de l'équation (E) (correspondant à la valeur λ=0) est connue exactement. L'équation mathématique (E) peut être par exemple une équation algébrique ou une équation différentielle.
Structure hyperfinevignette|Représentation schématique des niveaux fins et hyperfins de l’hydrogène. La structure hyperfine d’un niveau d’énergie dans un atome consiste en une séparation de ce niveau en états d’énergie très proches. Il s’observe essentiellement par une raie spectrale dans le domaine radio ou micro-onde, comme la raie à 21 centimètres de l’hydrogène atomique. La structure hyperfine s’explique en physique quantique comme une interaction entre deux dipôles magnétiques : Le dipôle magnétique nucléaire résultant du spin nucléaire ; Le dipôle magnétique électronique lié au moment cinétique orbital et au spin de l’électron.
Structure fineEn physique atomique, la structure fine décrit le dédoublement de raies spectrales d'un atome. Détectable par spectroscopie à haute résolution spectrale, la structure fine est un effet d'origine relativiste dont l'expression correcte se déduit à partir de l'équation relativiste pour les particules de spin 1/2 : l'équation de Dirac. Les raies denses observées dans les spectres sont prédites par l'étude de l'énergie d’interaction entre l’électron et le proton sans tenir compte du spin et des effets relativistes de l’électron.
Niveau d'énergieUn niveau d'énergie est une quantité utilisée pour décrire les systèmes en mécanique quantique et par extension dans la physique en général, sachant que, s'il y a bien quantification de l'énergie, à un niveau d'énergie donné correspond un « état du système » donné ; à moins que le niveau d'énergie soit dit « dégénéré ». La notion de niveau d'énergie a été proposée en 1913 par le physicien danois Niels Bohr.