Concept

Delta operator

In mathematics, a delta operator is a shift-equivariant linear operator on the vector space of polynomials in a variable over a field that reduces degrees by one. To say that is shift-equivariant means that if , then In other words, if is a "shift" of , then is also a shift of , and has the same "shifting vector" . To say that an operator reduces degree by one means that if is a polynomial of degree , then is either a polynomial of degree , or, in case , is 0. Sometimes a delta operator is defined to be a shift-equivariant linear transformation on polynomials in that maps to a nonzero constant. Seemingly weaker than the definition given above, this latter characterization can be shown to be equivalent to the stated definition when has characteristic zero, since shift-equivariance is a fairly strong condition. The forward difference operator is a delta operator. Differentiation with respect to x, written as D, is also a delta operator. Any operator of the form (where Dn(ƒ) = ƒ(n) is the nth derivative) with is a delta operator. It can be shown that all delta operators can be written in this form. For example, the difference operator given above can be expanded as The generalized derivative of time scale calculus which unifies the forward difference operator with the derivative of standard calculus is a delta operator. In computer science and cybernetics, the term "discrete-time delta operator" (δ) is generally taken to mean a difference operator the Euler approximation of the usual derivative with a discrete sample time . The delta-formulation obtains a significant number of numerical advantages compared to the shift-operator at fast sampling. Every delta operator has a unique sequence of "basic polynomials", a polynomial sequence defined by three conditions: Such a sequence of basic polynomials is always of binomial type, and it can be shown that no other sequences of binomial type exist. If the first two conditions above are dropped, then the third condition says this polynomial sequence is a Sheffer sequence—a more general concept.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.