Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Atypical aspects in speech concern speech that deviates from what is commonly considered normal or healthy. In this thesis, we propose novel methods for detection and analysis of these aspects, e.g. to monitor the temporary state of a speaker, diseases tha ...
In light of steady progress in machine learning, automatic speech recognition (ASR) is entering more and more areas of our daily life, but people with dysarthria and other speech pathologies are left behind. Their voices are underrepresented in the trainin ...
The goal of this thesis is to improve current state-of-the-art techniques in speaker verification
(SV), typically based on âidentity-vectorsâ (i-vectors) and deep neural network (DNN), by exploiting diverse (phonetic) information extracted using variou ...
Phonological classes define articulatory-free and articulatory-bound phone attributes. Deep neural network is used to estimate the probability of phonological classes from the speech signal. In theory, a unique combination of phone attributes form a phonem ...
State-of-the-art automatic speech recognition (ASR) and text-to-speech systems require a pronunciation lexicon that maps each word to a sequence of phones. Manual development of lexicons is costly as it needs linguistic knowledge and human expertise. To fa ...
Speech is a complex signal produced by a highly constrained articulation machinery. Neuro and psycholinguistic theories assert that speech can be decomposed into molecules of structured atoms. Although characterization of the atoms is controversial, the ex ...
State-of-the-art phoneme sequence recognition systems are based on hybrid hidden Markov model/artificial neural networks (HMM/ANN) framework. In this framework, the local classifier, ANN, is typically trained using Viterbi expectation-maximization algorith ...
Automatic speech recognition (ASR) systems, through use of the phoneme as an intermediary unit representation, split the problem of modeling the relationship between the written form, i.e., the text and the acoustic speech signal into two disjoint processe ...
One of the primary steps in building automatic speech recognition (ASR) and text-to-speech systems is the development of a phonemic lexicon that provides a mapping between each word and its pronunciation as a sequence of phonemes. Phoneme lexicons can be d ...
Standard automatic speech recognition (ASR) systems use phoneme-based pronunciation lexicon prepared by linguistic experts. When the hand crafted pronunciations fail to cover the vocabulary of a new domain, a grapheme-to-phoneme (G2P) converter is used to ...