In software engineering, profiling ("program profiling", "software profiling") is a form of dynamic program analysis that measures, for example, the space (memory) or time complexity of a program, the usage of particular instructions, or the frequency and duration of function calls. Most commonly, profiling information serves to aid program optimization, and more specifically, performance engineering.
Profiling is achieved by instrumenting either the program source code or its binary executable form using a tool called a profiler (or code profiler). Profilers may use a number of different techniques, such as event-based, statistical, instrumented, and simulation methods.
Profilers use a wide variety of techniques to collect data, including hardware interrupts, code instrumentation, instruction set simulation, operating system hooks, and performance counters.
The output of a profiler may be:
A statistical summary of the events observed (a profile)
Summary profile information is often shown annotated against the source code statements where the events occur, so the size of measurement data is linear to the code size of the program.
/* ------------ source------------------------- count */
0001 IF X = "A" 0055
0002 THEN DO
0003 ADD 1 to XCOUNT 0032
0004 ELSE
0005 IF X = "B" 0055
A stream of recorded events (a trace)
For sequential programs, a summary profile is usually sufficient, but performance problems in parallel programs (waiting for messages or synchronization issues) often depend on the time relationship of events, thus requiring a full trace to get an understanding of what is happening.
The size of a (full) trace is linear to the program's instruction path length, making it somewhat impractical. A trace may therefore be initiated at one point in a program and terminated at another point to limit the output.
An ongoing interaction with the hypervisor (continuous or periodic monitoring via on-screen display for instance)
This provides the opportunity to switch a trace on or off at any desired point during execution in addition to viewing on-going metrics about the (still executing) program.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
To efficiently program embedded systems an understanding of their architectures is required. After following this course students will be able to take an existing SoC, understand its architecture, and
Explore les performances des logiciels, couvrant la mesure, les objectifs et les stratégies d'amélioration, avec des exemples concrets de Netflix et Grand Theft Auto.
thumb|Comparaison de performance entre différents types d'ordinateurs. Un test de performance est un test dont l'objectif est de déterminer la performance d'un système informatique. L'acception la plus courante de ce terme est celle dans laquelle ces tests logiciels vont avoir pour objectif de mesurer les temps de réponse d'un système applicatif en fonction de sa sollicitation. Cette définition est donc très proche de celle de test de charge où l'on mesure le comportement d'un système en fonction de la charge d'utilisateurs simultanés.
Un ordinateur est un système de traitement de l'information programmable tel que défini par Alan Turing et qui fonctionne par la lecture séquentielle d'un ensemble d'instructions, organisées en programmes, qui lui font exécuter des opérations logiques et arithmétiques. Sa structure physique actuelle fait que toutes les opérations reposent sur la logique binaire et sur des nombres formés à partir de chiffres binaires.
In computer science, instruction scheduling is a compiler optimization used to improve instruction-level parallelism, which improves performance on machines with instruction pipelines. Put more simply, it tries to do the following without changing the meaning of the code: Avoid pipeline stalls by rearranging the order of instructions. Avoid illegal or semantically ambiguous operations (typically involving subtle instruction pipeline timing issues or non-interlocked resources).
The landscape of computing is changing, thanks to the advent of modern networking equipment that allows machines to exchange information in as little as one microsecond. Such advancement has enabled microsecond-scale distributed computing, where entire dis ...
EPFL2023
The pursuit of software security and reliability hinges on the identification and elimination of software vulnerabilities, a challenge compounded by the vast and evolving complexity of modern systems. Fuzzing has emerged as an indispensable technique for b ...
EPFL2024
This semester project report describes a prototype tracing tool that records the behavior of a Java program during its execution. It explains the two methods that were attempted to implement the tool, one using the Java debug interface, which gave poor res ...