Concept

Onglet sphérique

Résumé
En géométrie, un onglet sphérique est le solide découpé dans un boule par deux demi-plans ayant pour frontière le même diamètre. Plus précisément, ces demi-plans découpent dans la boule deux onglets sphériques, un, plus petit qu'un hémisphère, est l'onglet mineur, l'autre est l'onglet majeur. Un onglet sphérique est une portion de boule interceptée par un dièdre dont l'arête passe par le centre de la sphère. Son angle dièdre α et le rayon r de la sphère sont les deux dimensions caractérisant un onglet sphérique. Un quartier d'orange ou de citron est un exemple d'onglet sphérique. La surface enfermant l'onglet sphérique est constituée d'un fuseau sphérique et de deux demi-disques. Un onglet sphérique possède deux plans de symétrie: le plan médiateur de l'arête du dièdre (dans les cas des fuseaux terrestres c'est le plan équatorial) et le plan bissecteur de l'angle dièdre. Il possède donc un axe de symétrie qui est l'intersection de ces deux plans. L'axe antipodal est le diamètre commun aux deux demi-plans.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.