Categorical propositionIn logic, a categorical proposition, or categorical statement, is a proposition that asserts or denies that all or some of the members of one category (the subject term) are included in another (the predicate term). The study of arguments using categorical statements (i.e., syllogisms) forms an important branch of deductive reasoning that began with the Ancient Greeks. The Ancient Greeks such as Aristotle identified four primary distinct types of categorical proposition and gave them standard forms (now often called A, E, I, and O).
Carré logiqueLe carré logique ci contre représente les oppositions logiques entre les quatre propositions : Proposition notée A, universelle affirmative : « tous les S sont P » (SaP : S are all P) Proposition notée E, universelle négative : « aucun S n'est P » ou « tous les S sont non-P » (SeP : S excluded from P) Proposition notée I, particulière affirmative : « au moins un S est P » (SiP : some S in P). Proposition notée O, particulière négative : « au moins un S est non-P » (SoP : some S out of P), qui exprime la précédente négativement.
Implication réciproqueEn mathématiques, plus précisément en calcul propositionnel, une implication réciproque est une proposition interchangeant la prémisse et la conclusion d'une implication. La réciproque de la réciproque est alors l'implication initiale. Lorsque l'implication comporte plusieurs prémisses, l'échange de la conclusion avec seulement une partie des prémisses est parfois aussi appelée réciproque, comme pour le théorème de Thalès où les conditions d'alignement restent en prémisse pour la réciproque.
Logique traditionnelleEn philosophie, certains nomment logique traditionnelle celle qui a existé en Occident après Aristote et avant l'avènement de la logique mathématique moderne. Elle fut dominante en Europe depuis l'Antiquité jusqu'à la fin du . La logique d'Aristote est présentée dans six documents connus sous le nom dOrganon. Deux de ces documents, les Premiers Analytiques et De l'interprétation, contiennent l'étude des jugements et de l'inférence formelle et c'est cette partie des œuvres d'Aristote qui est passée à la postérité.